JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Small Area Estimation via Generalized Estimating Equations and the Panel Analysis of Unemployment Rates
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Small Area Estimation via Generalized Estimating Equations and the Panel Analysis of Unemployment Rates
Yeo, In-Kwon; Son, Kyoung-Jin; Kim, Young-Won;
  PDF(new window)
 Abstract
Most of existing studies about the small area estimation deal with the estimation of parameters based on cross-sectional data. However, since many official statistics are repeatedly collected at a regular interval of time, for instance, monthly, quarterly, or yearly, we need an alternative model which can handle characteristics of these kinds of data. In this paper, we investigate the generalized estimating equation which can model time-dependency among response variables and is useful to analyze repeated measurement or longitudinal data. We compare with the generalized linear model and the generalized estimating equation through the estimation of unemployment rates of 25 areas in Gyeongsangnam-do and Ulsan. The data consist of the status of employment and some covariates from January to December 2005.
 Keywords
Generalized estimating equations;generalized linear models;small area estimation;unemployment rates;
 Language
Korean
 Cited by
1.
MSPE를 이용한 임금총액 소지역 추정,황희진;신기일;

응용통계연구, 2009. vol.22. 2, pp.403-414 crossref(new window)
2.
Logistic Regression Type Small Area Estimations Based on Relative Error,;;

응용통계연구, 2011. vol.24. 3, pp.445-453 crossref(new window)
3.
소지역 실업률의 패널추정을 위한 일반화커널추정방정식,심주용;김영원;황창하;

Journal of the Korean Data and Information Science Society, 2013. vol.24. 6, pp.1199-1210 crossref(new window)
1.
Generalized kernel estimating equation for panel estimation of small area unemployment rates, Journal of the Korean Data and Information Science Society, 2013, 24, 6, 1199  crossref(new windwow)
2.
Logistic Regression Type Small Area Estimations Based on Relative Error, Korean Journal of Applied Statistics, 2011, 24, 3, 445  crossref(new windwow)
 References
1.
김재두, 신기일, 이상은 (2005). 공간 시계열 모형을 이용한 소지역 추정, <응용통계연구>, 18, 627-637

2.
김영원, 성나영 (2000). 소지역 통계 생산을 위한 추정 방법, Journal of the Korean Data & Information Science Society, 11, 111-126

3.
김영원, 최형아 (2004). Small area estimation techniques based on logistic model to estimate unemployment rate, The Korean Communications in Statistics, 11, 583-595

4.
박종태, 이상은 (2001). 소지역 추정법에 관한 비교연구, Journal of the Korean Data & Information Science Society, 12, 47-55

5.
신기일, 이상은 (2003). Model-data based small area estimation, The Korean Communications in Statistics, 10, 637-645

6.
정연수, 이계오, 이우일 (2003). 시군구 실업자 총계 추정을 위한 설계기반 간접추정법, <응용통계연구>, 16, 1-14

7.
Datta, G. S., Lahiri, P., Maiti, T. and Lu, K. L. (1999). Hierarchical Bayes estimation of unemployment rates for the States of the U.S., Journal of the American Statistical Association, 94, 1074-1082 crossref(new window)

8.
Ghosh, M., Natarajan, K., Stroud, T. W. F. and Carlin, B. P. (1998). Generalized linear models for small-area estimation, Journal of the American Statistical Association, 93, 273-282 crossref(new window)

9.
Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models, Biometrika, 73, 13-22 crossref(new window)

10.
Rao, J. N. K. (2003), Small Area Estimation, John Wiley & Sons, New York

11.
Rao, J. N. K. and Yu, M. (1994). Small area estimation by combining time series and cross-sectional data, The Canadian Journal of Statistics, 22, 511-528 crossref(new window)

12.
Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear model and the Gauss-Newton method, Biometrika, 61, 439-447

13.
You, Y., Rao, J. N. K. and Gambino, J. (2003). Model-based unemployment rate estimation for the Canadian labour force survey: A hierarchical Bayes approach, Survey Methodology, 29, 25-32