Advanced SearchSearch Tips
Comparison of Spatial Small Area Estimators Based on Neighborhood Information Systems
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Comparison of Spatial Small Area Estimators Based on Neighborhood Information Systems
Kim, Jeong-Suk; Hwang, Hee-Jin; Shin, Key-Il;
  PDF(new window)
Recently many small area estimation methods using the lattice data analysis have been studied and known that they have good performances. In the case of using the lattice data which is mainly used for small area estimation, the choice of better neighborhood information system is very important for the efficiency of the data analysis. Recently Lee and Shin (2008) compared and analyzed some neighborhood information systems based on GIS methods. In this paper, we evaluate the effect of various neighborhood information systems which were suggested by Lee and Shin (2008). For comparison of the estimators, MSE, Coverage, Calibration, Regression methods are used. The number of unemployment in Economic Active Population Survey(2001) is used for the comparison.
Spatial statistics;geographic information system;spatial autoregressive model;direct estimator;
 Cited by
공간 격자데이터 분석에 대한 우위성 비교 연구 - 이상치가 존재하는 경우 -,김수정;최승배;강창완;조장식;

Communications for Statistical Applications and Methods, 2010. vol.17. 2, pp.193-204 crossref(new window)
Small Area Estimation via Nonparametric Mixed Effects Model,Jeong, Seok-Oh;Shin, Key-Il;

응용통계연구, 2012. vol.25. 3, pp.457-464 crossref(new window)
소지역 실업자수 추정을 위한 로지스틱 선형혼합모형 기반 EBLUP 타입 추정량 평가,김서영;권순필;

응용통계연구, 2010. vol.23. 5, pp.891-908 crossref(new window)
비모수와 준모수 혼합모형을 이용한 소지역 추정,정석오;신기일;

응용통계연구, 2013. vol.26. 1, pp.71-79 crossref(new window)
Semiparametric and Nonparametric Mixed Effects Models for Small Area Estimation, Korean Journal of Applied Statistics, 2013, 26, 1, 71  crossref(new windwow)
Small Area Estimation via Nonparametric Mixed Effects Model, Korean Journal of Applied Statistics, 2012, 25, 3, 457  crossref(new windwow)
Estimation of the Forest Stand Volumes from Forest Inventory Data Based on Synthetic Estimation Method: A Case of the Economic Forest in Gangwon-do, Republic of Korea, Journal of Forest and Environmental Science, 2016, 32, 2, 140  crossref(new windwow)
Estimation of Forest Volumes in the Ecosystem Region Using Spatial Statistical Techniques, Journal of the Korean Association of Geographic Information Studies, 2015, 18, 2, 149  crossref(new windwow)
A Comparative Study on Spatial Lattice Data Analysis - A Case Where Outlier Exists -, Communications for Statistical Applications and Methods, 2010, 17, 2, 193  crossref(new windwow)
Estimations of Forest Growing Stocks in Small-area Level Considering Local Forest Characteristics, Journal of Korean Forest Society, 2015, 104, 1, 117  crossref(new windwow)
김달호,김재광 (2004). 가계조사 지역별 추정기법, <통계청 용역보고서>

김정오, 선기일 (2006). Comparison of small area estimation by sample sizes, <한국통계학회논문집>, 13, 669-683

이강석, 신기일 (2008). 격자자료분석을 위한 이웃정보시스템의 비교, <응용통계연구>, 21, 387-397

이상은 (2006). 공간통계량을 활용한 베이지안 자기포아송 모형을 이용한 소지역 통계,<응용통계연구>, 19,421-430

황희진, 신기일 (2008). 축소예측을 이용한 소지역 추정, <응용통계연구>, 21 , 109-123

Brown, G., Chambers, R., Heady, P. and Heasman, D. (2001). Evaluation of small area estimation methodsapplication to unemployment estimates from the UK LFS, In Proceedings of Statistics Canada Symposium 2001

Cressie, N. A. C. (1993). Statistics for Spatial Data, John Wiley & Sons, New York

Falosi, P. D., Falosi, S. and Russo, A. (1994). Empirical comparison of small area estimation methods for the Italian labour force survey, Survey Methodology, 20 , 171-176

Kaluzny, S. P., Vega, S. C., Cardoso, T. P. and Shelly, A. A. (1998). S+ Spatial Stats: User's Manual for Windows and UNIX, Springer, New York

McEwin, M. and Elazar, D. (2006). Regional Statistics: Small Area Estimation in Official Statistics, UNESCAP, APEX2

Rao, J. N. K. (2003). Small Area Estimation, John Wiley & Sons, New York