JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Decrement Models Under Fractional Independence Assumption
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Decrement Models Under Fractional Independence Assumption
Lee, Hang-Suck;
  PDF(new window)
 Abstract
This paper derives conversion formulas from yearly-based absolute rates of decrements to monthly-based rates of decrement due to cause j under FI (fractional age independence) assumption that is a generalization of UDD assumption. Next, it suggests conversion formulas from monthly-based absoluterates of decrements to monthly-based rates of decrement due to cause j under FI assumption. In addition, it calculates conversion formulas from yearly-based rates of decrement due to cause j to the corresponding monthly-based absolute rates of decrements under FI assumption. Some numerical examples are discussed.
 Keywords
Absolute rates of decrements;rates of decrement due to cause j;FI(fractional age independence) assumption;
 Language
Korean
 Cited by
1.
탈퇴원인별 상이한 소수연령 분포에서 다중탈퇴율 계산과 변액연금에 응용,이항석;

Communications for Statistical Applications and Methods, 2009. vol.16. 1, pp.85-102 crossref(new window)
2.
생명보험에서 수명분포 단수부분에 대한 가정에 관한 연구,이수빈;차지환;

응용통계연구, 2012. vol.25. 1, pp.1-13 crossref(new window)
3.
연생모형을 이용한 역모기지의 분석,백혜연;이선주;이항석;

응용통계연구, 2013. vol.26. 3, pp.531-547 crossref(new window)
1.
An Analysis of a Reverse Mortgage using a Multiple Life Model, Korean Journal of Applied Statistics, 2013, 26, 3, 531  crossref(new windwow)
2.
Study on Assumptions for Fractional Ages in Life Insurance, Korean Journal of Applied Statistics, 2012, 25, 1, 1  crossref(new windwow)
3.
On survival assumptions between integer ages in the theory of competing risks, Journal of the Korean Statistical Society, 2016, 45, 4, 633  crossref(new windwow)
 References
1.
Apostol, T. M. (1974). Mathematical Analysis, Addison-Wesley

2.
Bowers, N. L., Jones, D. A., Gerber, H. U., Nesbitt, C. J. and Hickman, J. C. (1997). Actuarial Mathematics, Society of Actuaries

3.
Carriere, J. F. (1994). Dependent decrement theory, Transactions of Society of Actuaries, 46, 45-74

4.
Daniel, J. W. (1993). Multiple-decrement models and corresponding conditional single-decrement models, Actuarial Research Clearing House, 1, 229-237

5.
Jones, B. L. and Mereu, J. A. (2000). A family of fractional age assumptions, Insurance: Mathematics and Economics, 27, 261-276 crossref(new window)

6.
Jones, B. L. and Mereu, J. A. (2002). A critique of fractional age assumptions, Insurance: Mathematics and Economics, 30, 363-370 crossref(new window)

7.
Lee, H. (2008). Generalized conversion formulas between multiple decrement models and associated single decrement models, The Korean Journal of Applied Statistics, 21, 739-754 crossref(new window)

8.
Shiu, E. S. W. (1987). Multiple-decrements by Riemann-Stieltjes integration, Actuarial Research Clearing House, 1, 1-4

9.
Willmot, G. E. (1997). Statistical independence and fractional age assumptions, North American Actuarial Journal, 1, 84-99 crossref(new window)