Comparison of Shape Variability in Principal Component Biplot with Missing Values

Title & Authors
Comparison of Shape Variability in Principal Component Biplot with Missing Values
Shin, Sang-Min; Choi, Yong-Seok; Lee, Nae-Young;

Abstract
Biplots are the multivariate analogue of scatter plots. They are useful for giving a graphical description of the data matrix, for detecting patterns and for displaying results found by more formal methods of analysis. Nevertheless, when some values are missing in data matrix, most biplots are not directly applicable. In particular, we are interested in the shape variability of principal component biplot which is the most popular in biplots with missing values. For this, we estimate the missing data using the EM algorithm and mean imputation according to missing rates. Even though we estimate missing values of biplot of incomplete data, we have different shapes of biplots according to the imputation methods and missing rates. Therefore we propose a RMS(root mean square) for measuring and comparing the shape variability between the original biplots and the estimated biplots.
Keywords
Biplots;EM algorithm;mean imputation;principal component biplot;RMS;shape variability;
Language
English
Cited by
1.
결측값이 있는 정준상관 행렬도의 형상변동 연구,홍현욱;최용석;신상민;강창완;

응용통계연구, 2010. vol.23. 5, pp.955-966
2.
연속형과 범주형의 혼합자료에 대한 혼합형 h-plot,박준수;최용석;신상민;

Journal of the Korean Data Analysis Society, 2016. vol.18. 1B, pp.151-161
1.
A Study on Shape Variability in Canonical Correlation Biplot with Missing Values, Korean Journal of Applied Statistics, 2010, 23, 5, 955
2.
A robust AMMI model for the analysis of genotype-by-environment data, Bioinformatics, 2015, btv533
References
1.
Choi, Y. S., Hyun, G. H. and Yun, W. J. (2005). Biplots' variability based on the Procrustes analysis, Journal of the Korean Data Analysis Society, 7, 1925-1933

2.
Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, Series B, 39, 1-38

3.
Dryden, I. L. and Mardia, K. V. (1998). Statistical Shape Analysis, John Wiley & Sons, Chichester

4.
Gabriel, K. R. (1971). The biplot graphics display of matrices with application to principal component analysis, Biometrika, 58, 453-467

5.
Johnson, R. A. and Wichern, D. W. (1998). Applied Multivariate Statistical Analysis, Prentice-Hall, New York

6.
Little, R. J. A. (1988). A test of missing completely at random for multivariate data with missing values, American Statistical Association, 83, 1198-1202

7.
Little, R. J. A. and Rubin, D. B. (1987). Statistical Analysis with Missing Data, Wiley, New York

8.
McLachlan, G. J. and Krishnan, T. (1997). The EM Algorithm and Extensions, Wiley, New York

9.
Rubin, D. B. (1976). Inference and missing data, Biometrika, 63, 581-592

10.
Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data, Chapman & Hall/CRC, London

11.
Srivastava, M. S. (2002). Methods of Multivariate Statics, Wiley, New York