Advanced SearchSearch Tips
Descriptive and Systematic Comparison of Clustering Methods in Microarray Data Analysis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Descriptive and Systematic Comparison of Clustering Methods in Microarray Data Analysis
Kim, Seo-Young;
  PDF(new window)
There have been many new advances in the development of improved clustering methods for microarray data analysis, but traditional clustering methods are still often used in genomic data analysis, which maY be more due to their conceptual simplicity and their broad usability in commercial software packages than to their intrinsic merits. Thus, it is crucial to assess the performance of each existing method through a comprehensive comparative analysis so as to provide informed guidelines on choosing clustering methods. In this study, we investigated existing clustering methods applied to microarray data in various real scenarios. To this end, we focused on how the various methods differ, and why a particular method does not perform well. We applied both internal and external validation methods to the following eight clustering methods using various simulated data sets and real microarray data sets.
Microarray;gene expression data;clustering;
 Cited by
Alizadeh, A. A, Eisen, M. B., Davis, R. E., Ma, C, Lossos, I. S., Rosenwald, A., Boldrick, J. C, Sabet, H., Tran, T., Yu, X., Powell, J. I., Yang, L., Marti, G. E., Moore, T., Hudson, J., Lu, L., Lewis, D. B., Tibshirani, R., Sherlock, G., Chan, W. C, Greiner, T. C, Weisenburger, D. D.,Armitage, J. O., Warnke, R., Levy, R., Wilson, W., Grever, M. R., Byrd, J. C, Botstein, D., Brown, P.O., and Staudt, L. M. (2000). Distinct types of diffuse large B-celllymphoma identified by gene expression profiling, Nature, 403, 503-511 crossref(new window)

Alon, U., BarKai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., and Levine, A. J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays, Proceeding of the National Academy of Sciences, 96, 6745-6750 crossref(new window)

Banfield, J. D., Raftery, A E. (1993). Model-based gaussian and non-gaussian clustering, Biometrics, 49, 803-822 crossref(new window)

Bezdek, J. C (1981). Pattern Rcognition with Fuzzy Objective Function Algorithms, Plenum press, New York

Bhattacharjee, A., Richards, W. G., Staunton, J. Li, C, Monti, S., Vasa, P., Ladd, C, Beheshti, J., Bueno, R., Gillette, M., Loda, M., Weber, G., Mark, E. J., Lander, E. S., Wong, W., Johnson, B. E., Golub, T. R., Sugarbaker, D. J. and Meyerson, M. (2001). Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma sub-classes, Proceeding of the National Academy of Sciences, 98, 13790-13795 crossref(new window)

Bittner, M., Meltzer, P. and Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher, M., Simon, R., Yakhini, Z., Ben-Dor, A., Sampas, N., Dougherty, E., Wang, E., Marincola, F., Gooden, C, Lueders, J., Glatfelter, A., Pollock, P., Carpten, J., Gillanders, E., Leja, D., Dietrich, K., Beaudry, C, Berens, M., Alberts, D., Sondak, V., Hayward, N. and Trent, J. (2000). Molecular classification of cutaneous malignant melanoma by gene expression profiling, Nature, 406, 536-540 crossref(new window)

Brown, P. O. and Botstein, D. (1999). Exploring the new world of the genome with DNA microarrays, The Chipping Forecast, 21, 33-37 crossref(new window)

Darlene, R. G., Debashis, G. and Erin, M. C (2002). Statistical issues in the clustering of gene expression data, Statistica Sinica, 12, 219-240

Datta, S. and Datta, S. (2003). Comparisons and validation of statistical clustering techniques for microarray gene expression data, Bioinformatics, 19, 459-466 crossref(new window)

Dembele, D. and Kastner, P (2003). Fuzzy C-means method for clustering microarray data, Bioinformatics, 19, 973-980 crossref(new window)

Dudoit, S. and Fridlyand, J. (2002). A prediction-based resampling method for estimating the number of clusters in a dataset, Genome Biology, 3, research0036.1-0036.21

Efron, B. and Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-validation, American Statistician, 37, 36-48 crossref(new window)

Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D. (1998). Cluster analysis and display of genomewide expression patterns, Proceeding of the National Academy of Sciences, 95, 14863-14868 crossref(new window)

Fraley, C and Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation, Journal of the American Statistical Association, 97, 611-631 crossref(new window)

Gasch, A. P. and Eisen, M. B. (2002). Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering, Genome Biology, 3, research0059

Goldstein, D. R., Ghosh, D. and Conlon, E. M. (2002). Statistical issues in the clustering of gene expression data, Statistica Sinica, 12, 219-240

Golub, T. R., Sionim, D. K. and Tamayo, P., Huard, C, Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A, Bloomfield, C D., Lander, E. S. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, Science, 286, 531-537 crossref(new window)

Grotkjaer, T., Winther, O., Regenberg, B., Nielsen, J. and Hansen, L. K. (2006). Robust multi-scale clustering of large DNA microarray datasets with the consensus algorithm. Bioinformatics, 22, 58-67 crossref(new window)

Guralnik, V. and Karypis, G. (2001). A scalable algorithm for clustering protein sequences, In Workshop on Data Mining in Bioinformatics, Proceedings of the U.S.A., 73-80

Halkidi, M., Batistakis, Y. and Vazirgiannis, M. (2001). On clustering validation techniques, Journal of Intelligenet Information System, 17, 107-145 crossref(new window)

Handl, J., Knowles, J. and Kell, D. B. (2005). Computational cluster validation in post-genomic data analysis, Bioinformatics, 21, 3201-3212 crossref(new window)

Hastie, T., Tibshirani, R. and Fredman, J. (2001). The Elements of Statistical Learning: Data Mining, Inference and Prediction, Springer-Verlag, New York

Hosel, V. and Walcher, S. (2001). Clustering techniques: A brief survey, Technical Report, Institute of Biomathematics and Biometry

llana, B.-L. (2006). A generalized clustering problem, with application to DNA microarrays, Statistical Applications in Genetics and Molecular Biology, 5, Article 2 crossref(new window)

Jain, A. K. and Dubes, R. C (1988). Algorithms for Clustering Data, Prentice-Hall, Inc., Upper Saddle River, New Jersey

Jain, A K., Murty, M. N. and Flynn, P. J. (1999). Data clustering: A Review. ACM Computing Surveys, 31, 264-323 crossref(new window)

Kaufman, L. and Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis, John Wiley & Sons, New York

Kohonen, T. (1997). Self-Organizing Maps, Springer, Heidelberg

Lander, E. S. (1999). Array of hope, Nature Genetics, 21, 3-4 crossref(new window)

Lee, J. W., Lee, J. B., Park, M. and Song, S. H. (2005). An extensive comparison of recent classification tools applied to microarray data, Computational Statistics & Data Analysis, 48, 869-885 crossref(new window)

Leisch, F. (1999). Bagged clustering. Working Paper Serise 51, SFB, Adaptive Information Systems and Modeling in Economics and Management Science

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations, Proceedings of the 5th Berkely Symposium, 1, 281-297

McLachlan, G. J. and Basford, K. E. (1988). Mixture models: inference and applications to clustering, Marcel Dekker, New York

Milligan, G. W. and Cooper, M. C (1986). A study of the comparability of external criteria for hierarchical cluster analysis, Multivariate Behavioral Research, 21, 441-458 crossref(new window)

Monti,S., Tamayo, P., Mesirov, J. and Golub, T. (2003). Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data, Machine Learning Journal, 52, 91-118 crossref(new window)

Nagy, G. (1968). State of the art in pattern recognition, Proceedings of the IEEE, 56, 836-862 crossref(new window)

Pensa, R. G., Robardet, C and Boulicaut, J.-F. (2005). LNAI 3721, 643-650

Quanckenbush, J. (2001). Computational analysis of microarray data, Nature Review Genetics, 2, 418-427 crossref(new window)

R Development Core Team. R: A language and environment for statistical computing. 2004 [http://www.Rproject. org]. R Foundation for Statistical Computing, Vienna, Austria [ISBN 3-900051-00-3]

Ross, D. T., Scherf, U., Eisen, M. B., Perou, C. M., Rees, C, Spellman, P., Iyer, V., Jeffrey, S. S., Van de Rijn, M., Waltham, M., Pergamenschikov, A, Lee, J. C, Lashkari, D., Shalon, D., Myers, T. G., Weinstein, J. N., Botstein, D. and Brown, P. O. (2000). Systematic variation in gene expression patterns in human cancer cell lines, Nature Genetics, 24, 227-234 crossref(new window)

Tamayo, P., Sionim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S. and Golub, T. R. (1999). Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proceeding of the National Academy of Science, 96, 2907-2912 crossref(new window)

Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J. and Church, G. M. (1999). Systematic determination of genetic network architecture, Nature Genetics, 22, 281-285 crossref(new window)

Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2003). Class prediction by nearest shrunken centroids, with applications to DNA microarrays, Statistical Science, 18, 104-117 crossref(new window)

Troyanskaya, O., Cantor, M., Sherlock, G. Brown, P., Hastie, T., Tibshirani, R., Botstein, D. and Altman, R. B. (2001). Missing value estimation methods for DNA microarrays, Bioinformatics, 17, 520-525 crossref(new window)

Tseng, G. C and Wong, W. H. (2005). Tight clustering: A Resamping-based approach for identifyng stable and tight patterns in data, Biometrics, 61, 10-16 crossref(new window)

Verhaak, R. G. W., Staal, F. J. T., Valk, P. J. M., Lowenberg, B., Reinders, M. J. and de Ridder, D. (2006). The effect of oligonucleotide microarray data pre-processing on the analysis of patient-cohort studies, BMC Bioinformatics, 7, 105 crossref(new window)

Yang, Y. H., Dudoit, S., Luu, P. and Speed, T. (2001). Normalization for cDNA microarray data, Optical Technologies and Informatics, 42, 141-152

Yeung, K. Y., Fraley, C, Murua, A., Raftery, A. E. and Ruzzo, W. L. (2001). Model-based clustering and data transformations for gene expression data, Bioinformatics, 17, 977-987 crossref(new window)

Yeung, K. Y., Haynor, D. R. and Ruzzo, W. L. (2001). Validating clustering for gene expression data, Bioinformatics, 17, 309-318 crossref(new window)

Yeung, K.. Y. and Ruzzo, W. L. (2001). An empirical study on principal component analysis for clustering gene expression data, Bioinformatics, 17, 763-774 crossref(new window)