JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Use of Minimal Spanning Trees on Self-Organizing Maps
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Use of Minimal Spanning Trees on Self-Organizing Maps
Jang, Yoo-Jin; Huh, Myung-Hoe; Park, Mi-Ra;
  PDF(new window)
 Abstract
As one of the unsupervised learning neural network methods, self-organizing maps(SOM) are applied to various fields. It reduces the dimension of multidimensional data by representing observations on the low dimensional manifold. On the other hand, the minimal spanning tree(MST) of a graph that achieves the most economic subset of edges connecting all components by a single open loop. In this study, we apply the MST technique to SOM with subnodes. We propose SOM`s with embedded MST and a distance measure for optimum choice of the size and shape of the map. We demonstrate the method with Fisher`s Iris data and a real gene expression data. Simulated data sets are also analyzed to check the validity of the proposed method.
 Keywords
Self-organizing map(SOM);minimal spanning tree(MST);data visualization;distance measure;
 Language
Korean
 Cited by
 References
1.
김성수 (1999). 통계그래픽스를 이용한 K-평균 및 계층적 군집분석, <한국분류학회지>, 3, 13-27

2.
엄익현, 허명회 (2005). SOM에서 개체의 시각화, <응용통계연구>, 18, 83-98

3.
허명회 (2003). 주성분 자기조직화 지도 PC-SOM, <응용통계연구>, 16, 321-333

4.
Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C, Lossos, I. S., Rosenwald, A., Boldrick, J. C, Sabet, H., Tran, T., Yu, X., Powell, J. I., Yang, L., Marti, G. E., Moore, T., Hudson, J., Jr, Lu, L., Lewis, D. B., Tibshirani, R., Sherlock, G., Chan, W. C, Greiner, T. C, Weisenburger, D. D., Armitage, J. O., Warnke, R., Levy, R., Wilson, W., Grever, M. R., Byrd, J. C, Botstein, D., Brown, P. O. and Staudt, L. M. (2000). Different type of diffuse large B-cell lymphoma identified by gene expression profiling, Nature, 403, 503-511 crossref(new window)

5.
Berglund, E. and Sitte, J. (2006). The parameterless self-organizing map algorithm, IEEE Transactions on Neural Networks, 17, 305-316 crossref(new window)

6.
Gower, J. C and Ross, G. J. S. (1969). Minimum spanning trees and single linkage cluster analysis, Applied Statistics, 18, 54-64 crossref(new window)

7.
Haese, K., Goodhill, G. J. (2001). Auto-SOM: Recursive parameter estimation for guidance of self-organizing feature maps, Neural Computing, 13, 595-619 crossref(new window)

8.
Hsu, A. L. and Halgamuge, S. K. (2003). Enhancement of topology preservation and hierarchical dynamic self-organising maps for data visualisation, International Journal of Approximate Reasoning, 32, 259-279 crossref(new window)

9.
Hsu, C C (2006). Generalizing self-organizing map for categorical data, IEEE Transactions on Neural Networks, 17, 294-304 crossref(new window)

10.
Kim, S. S., Kwon, S. and Cook, D. (2000). Interactive visualization of hierarchical clusters using MDS and MST, Metrika, 51, 39-51 crossref(new window)

11.
Kohonen, T. (1995). Self-Organizing Maps, Springer-Verlag, Berlin

12.
Park, M., Jang, Y. J. and Huh, M. H. (2005). Analysis of gene expression data using PC-SOM, In Proceedings of the 55th session of International Statistical Institute

13.
Prim, R. C (1957). Shortest connection networks and some generalizations, Bell System Technical Journal, 36, 1389-1401 crossref(new window)

14.
Sarnsonova, E. V., Kok, J. N. and Ijzerman, A. P. (2006). TreeSOM: Cluster analysis in the self-organizing map, Neural networks, 19,935-949 crossref(new window)

15.
Tamayo, P., Slonirn, D., Mesirov, J., Zhu, Q., Kitareewan, 5., Dmitrovsky, E., Lander, E. S. and Golub, T. R. (1999). Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation, In Proceedings of the National Academy of Sciences, 96, 2907-2912 crossref(new window)

16.
Xu, Y., Olman, V. and Xu, D. (2001). Minimal spanning trees for gene expression data clustering, Genome Informatics, 12, 24-33

17.
Yan, A. (2006). Application of self-organizing maps in compounds pattern recognition and combinatorial library design, Combinatorial Chemistry & High Throughput Screening, 9, 473-480 crossref(new window)