A Study on the Relationship between Player Characteristic Factors and Competitive Factors of Tennis Grand Slams Competition Using Canonical Correlation Biplot and Procrustes Analysis

Title & Authors
A Study on the Relationship between Player Characteristic Factors and Competitive Factors of Tennis Grand Slams Competition Using Canonical Correlation Biplot and Procrustes Analysis
Choi, Tae-Hoon; Choi, Yong-Seok; Shin, Sang-Min;

Abstract
Canonical correlation biplot is 2-dimensional plot for investigating the relationship between two sets of variables and the relationship between observations and variables in canonical correlation analysis graphically. Recently, Choi and Choi (2008) suggested a method for investigating the relationship between skill and competition score factors of KLPGA players using canonical correlation biplot and cluster analysis. analysis. Procrustes analysis is very useful tool for comparing shape between configurations. Therefore, in this study, we will provide a method for investigating the relationship between player characteristic factors and competitive factors of tennis grand slams competition using Canonical correlation biplot and Procrustes analysis.
Keywords
Canonical correlation analysis;biplot;tennis grand slams competition;Procrustes analysis;
Language
Korean
Cited by
1.
일반화 정준상관 행렬도와 프로크러스티즈 분석을 응용한 대한테니스협회 등록 선수의 체격요인, 체력요인 및 기초기술요인에 대한 분석연구,최태훈;최용석;

Communications for Statistical Applications and Methods, 2010. vol.17. 6, pp.917-925
2.
결측값이 있는 정준상관 행렬도의 형상변동 연구,홍현욱;최용석;신상민;강창완;

응용통계연구, 2010. vol.23. 5, pp.955-966
3.
편정준상관 행렬도,염아림;최용석;

응용통계연구, 2011. vol.24. 3, pp.559-566
4.
Semi-Partial Canonical Correlation Biplot,;;;

응용통계연구, 2012. vol.25. 3, pp.521-529
1.
Semi-Partial Canonical Correlation Biplot, Korean Journal of Applied Statistics, 2012, 25, 3, 521
References
1.
김도연, 최태훈 (2005). 테니스 그랜드슬램 대회의 경기분석, <한국체육측정평가학회지>, 3, 13-25

2.
최용석 (2008). <행렬도 분석, 기초과학 총서 2권>, 부산대학교 기초과학연구원

3.
최용석, 현기흥 (2006). <통계적 형상분석의 이해와 응용-프로크러스티즈 분석의 저항성 버전 연구 및 개발>, 자유아카데미, 서울

4.
최용석, 현기홍, 정수미 (2005a). 다변량 분산분석에서 추정된 모수 행렬의 행렬도, Journal of The Korean Data Analysis Society, 7, 851-858

5.
최용석, 현기홍, 정수미 (2005b). MANCOVA biplot, <한국통계학논문집>, 12, 705-712

6.
최용석, 강창완, 김경덕 (2005c). 명목형 다항반응 로지스틱회귀모형의 행렬도 분석, Journal of The Korean Data Analysis Society, 7, 839-849

7.
최태훈 (2005). <테니스선수의 체격, 체력, 기초기술과 랭킹간의 관계>, 박사학위논문, 국민대학교

8.
최태훈, 최용석 (2008). 정준상관 행렬도와 군집분석을 응용한 KLPGA 선수의 기술과 경기성적요인에 대한 연관성 분석, <응용통계연구>, 21, 429-439

9.
허명회 (1993). <統計相談의 이해>, 자유아카데미, 서울

10.
Choi, Y. S. (1991). Resistant Principal Component Analysis, Biplot and Correspondence Analysis, 박사학위논문,

11.
Choi, Y. S., Hyun, G. H. and Kim, J. G. (2005a). A numerical comparison of map variability in SCA using the procrustes analysis, Journal of the Korean Data Analysis Society, 7, 1531-1538

12.
Choi, Y. S., Hyun, G. H. and Yun, W. J. (2005b). Biplots' variability based on the procrustes analysis, Journal of the Korean Data Analysis Society, 7, 1925-1933

13.
Choi, Y. S. and Kim, H. Y. (2008). Applications of cluster analysis in biplots, The Korean Communications in Statistics, 15, 65-76

14.
Gabriel, K. R. (1971). The biplot graphics display of matrices with applications to principal component analysis, Biometrika, 58, 453-467

15.
Park, M. and Huh, M. H. (1996a). Canonical correlation biplot, The Korea Communications in Statistics, 3, 11-19

16.
Park, M. and Huh, M. H. (1996b). Quantification plots for several sets of variables, Journal of the Korea Statistical Society, 25, 599-601