JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Development of Time-Series Model for City Gas Demand Forecasting
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Development of Time-Series Model for City Gas Demand Forecasting
Choi, Bo-Seung; Kang, Hyun-Cheol; Lee, Kyung-Yun; Han, Sang-Tae;
  PDF(new window)
 Abstract
The city gas demand data has strong seasonality. Thus, the seasonality factor is the majority for the development of forecasting model for city gas supply amounts. Also, real city gas demand amounts can be affected by other factors; weekday effect, holiday effect, the number of validity day, and the number of consumptions. We examined the degree of effective power of these factors for the city gas demand and proposed a time-series model for efficient forecasting of city gas supply. We utilize the liner regression model with autoregressive regression errors and we have excellent forecasting results using real data.
 Keywords
City gas;demand forecast;regression with autoregressive errors;validity day effect;elasticity of temperature;
 Language
Korean
 Cited by
1.
계절조정기법을 이용한 도시가스 공급량 예측,최보승;강현철;한상태;

Journal of the Korean Data Analysis Society, 2010. vol.12. 6, pp.3247-3258
2.
시계열 회귀모형에 기초한 욕실 내 용수 사용량 추정,명성민;김동건;조진남;

한국컴퓨터정보학회논문지, 2014. vol.19. 8, pp.19-26 crossref(new window)
3.
선별적 샘플링을 이용한 국내 도시가스 일별 수요예측 절차 개발,이근철;한정희;

한국산학기술학회논문지, 2015. vol.16. 10, pp.6860-6868 crossref(new window)
1.
Estimating Bathroom Water-uses based on Time Series Regression, Journal of the Korea Society of Computer and Information, 2014, 19, 8, 19  crossref(new windwow)
2.
Forecasting Daily Demand of Domestic City Gas with Selective Sampling, Journal of the Korea Academia-Industrial cooperation Society, 2015, 16, 10, 6860  crossref(new windwow)
 References
1.
김희영, 박유성 (2007). 제조업을 중심으로 한 한국 산업별 GDP 예측모형연구, Journal of the Korean Data Analysis Society, 9, 1229-2354

2.
나인강, 유지철 (2000). <에너지 수요 분석 및 전망 -2001 년 수요전망과 정책 이슈->, 에너지 경제 연구원, 서울

3.
박광수, 김태헌, 최도영, 박호정, 정창봉, 김남일, 김영덕, 김선정 (2004). <중단기 에너지수급 전망 연구(II)>, 에너지 경제 연구원, 서울

4.
박유성, 김기환 (2002). <시계열 자료분석 I>, 자유아카데미, 서울

5.
송명숙, 최보승, 김성용, 라울머레티 (2008). 계절조정 방법을 이용한 지적업무량 예측, Journal of the Korean Data Analysis Society, 10, 1579-1590

6.
양준모, 유상희 (2008). 전력수요관리를 감안한 합리적 전력수요예측, Journal of the Korean Data Analysis Society, 10, 2755-2765

7.
유병철 (1996). <전력수요의 가격탄력성과 요금조정방안>, 에너지 경제 연구원, 서울

8.
이충열, 강윤영 (2007). 배기량별 승용차 등급 변화를 고려한 승용차 에너지 수요 예측, Journal of the Korean Data Analysis Society, 9, 1179-1195

9.
Bass, F. M. (1969). A new product growth model for consumer durables, Management Science, 15, 215-227 crossref(new window)

10.
Engle, R. F. and Granger, C. W. J. (1987). Co-integration and error correlation: Representation, estimation, and testing, Econometrica, 55, 251-276 crossref(new window)

11.
Findley, D. F., Mansell, B. C., Bell, W. R., Otto, M. C. and Chen, B. C. (1998). New capabilities and methods of the X-12-ARIMA seasonal adjustment program (with discussion), Biometrika, 61, 485-492 crossref(new window)

12.
Pesaran, H., Smith, R. and Akiyama, T. (1998). Energy Demand in Asian Developing Economies, A World Bank Study