Advanced SearchSearch Tips
A Study on an Algorithm for Typical Meteorological Year Generation for Wind Resource of the Korean Peninsula
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study on an Algorithm for Typical Meteorological Year Generation for Wind Resource of the Korean Peninsula
Kim, Hea-Jung; Jung, Sun; Choi, Yeoung-Jin; Kim, Kyu-Rang; Jung, Young-Rim;
  PDF(new window)
This study suggests an algorithm for generating TMY(typical meteorological year) for the Korean peninsula, and generates the TMY based on the algorithm using 11 years(1998~2008) wind data observed at 77 sites of Regional Meteorological Offices(RMO). The algorithm consists of computing TMM scores based on the various statistics defined by the Fikenstein-Shafer statistical model and, in turn, generating TMY based on the TMM scores. Also the algorithm has two stages designed to yield the best representation of the regional wind characteristics appeared during the 11 years(1998~2008). The first stage is designed for the representation of each of 77 regions of RMO and the second is for the Korean peninsula. Various comparison studies are provided to demonstrate the properties of the TMY like its utility and typicality.
Wind resource map;numerical weather simulation;TMY;Filkenstein-Shafer statistical model;TMM score;cluster analysis;RMSD;principal component analysis;
 Cited by
통계적 바람장모형에의한 고해상도(1Km×1Km)풍력에너지지도 작성에 관한 연구,김혜중;김현식;최영진;변재영;

응용통계연구, 2010. vol.23. 6, pp.1157-1167 crossref(new window)
로그정규풍속모형에 의한 풍력자원특성의 추론 및 응용에 관한 연구,김혜중;곽화륜;최영진;변재영;

Journal of the Korean Data Analysis Society, 2010. vol.12. 4, pp.2283-2295
남한전역 1Km×1Km 격자지점에 대한 수치기상모의풍속의 정확도 향상을 위한 통계적 보정법,김혜중;김현식;최영진;이승우;서범근;

응용통계연구, 2011. vol.24. 6, pp.1225-1235 crossref(new window)
중규모 수치모델 WRF를 이용한 북한 풍력-기상자원지도 개발,서범근;변재영;최영진;

대기, 2011. vol.21. 4, pp.471-480
2-단계 계산 알고리즘에 의한 2010 한반도 바람자원의 TMY 구축에 관한 연구,김혜중;정선;최영진;변재영;

Journal of the Korean Data Analysis Society, 2011. vol.13. 1, pp.269-281
풍력-기상자원지도에 기반한 제주 행원 풍력발전단지 효율성 평가,변재영;강미선;정현숙;

한국지구과학회지, 2013. vol.34. 7, pp.633-644 crossref(new window)
A Statistical Tuning Method to Improve the Accuracy of 1Km×1Km Resolution-Wind Data of South Korea Generated from a Numerical Meteorological Model, Korean Journal of Applied Statistics, 2011, 24, 6, 1225  crossref(new windwow)
Evaluation of Wind Turbine Efficiency of Haengwon Wind Farm in Jeju Island based on Korean Wind Map, Journal of the Korean earth science society, 2013, 34, 7, 633  crossref(new windwow)
The Establishment of a High Resolution(1Km×1Km) Wind Energy Map Based on a Statistical Wind Field Model, Korean Journal of Applied Statistics, 2010, 23, 6, 1157  crossref(new windwow)
김용상, 박옥란, 황승언 (2002). 기상연구소의 국지규모 기상분석 및 예측시스템(KLAPS)의 실시간 운영, <한국기상학회지>, 38, 1-10

김현구, 장운석, 경남호, 이화운, 최현정, 김동혁 (2006). 수치바람모의에 의한 저해상도 국가 바람지도의 구축, <한국태양에너지학회>, 26, 31-38

Argiriou, A. and Lykoudis, S. (1999). Comparison of methodologies for TMY generation using 20 years data for Athens, Greece, Solar Energy, 1, 33-45 crossref(new window)

Chan, A. L. S., Chow, T. T., Fong, S. K. F. and Lin, J. Z. (2006). Generation of a typical meteorological year for Hong Kong, Energy Conversion Management, 47, 87-96 crossref(new window)

Finkelstein, J. M. and Schafer, R. E. (1971). Improved goodness of fit tests, Biometrika, 58, 641-645 crossref(new window)

Hall, I. J., Prairie, R. R., Anderson, H. E. and Boss, E. C. (1978). Generalization of typical meteorological years for 26 Solmet 97ations, Sandia Laboratory Report, Energy Conversion Management, SAND 78-1601, Albuquerque, New Maxico

Klein, S. A., Cooper, P. I., Freeman, T. L., Beekman, D. M., Beckman, W. A. and Duffie, J. A. (1975). A method of simulation of solar processes and its applications, Solar Energy, 17, 29-37 crossref(new window)

Pissimanis, D., Karras, G., Notaridou, V. and Gavra, K. (1988). The generation of a 'Typical Meteorological Year' for the city of Athens, Solar Energy, 40, 405-411 crossref(new window)

Skeiker, K. (2004). Generation of a typical meteorological year for Damascus zone using the Filkenstein-Schafer statistical method, Energy Conversion and Management, 45, 99-112 crossref(new window)