Advanced SearchSearch Tips
Analysis of Multivariate-GARCH via DCC Modelling
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Analysis of Multivariate-GARCH via DCC Modelling
Choi, S.M.; Hong, S.Y.; Choi, M.S.; Park, J.A.; Baek, J.S.; Hwang, S.Y.;
  PDF(new window)
Conditional correlation between financial time series plays an important role in risk management, asset allocation and portfolio selection and therefore diverse efforts for modeling conditional correlations in multivariate-GARCH processes have been made in last two decades. In particular, CCC (cf. Bollerslev, 1990) and DCC(dynamic conditional correlation, cf. Engle, 2002) models have been commonly used since they are relatively parsimonious in the number of parameters involved. This article is concerned with DCC modeling for multivariate GARCH processes in comparison with CCC specification. Various multivariate financial time series are analysed to illustrate possible advantages of DCC over CCC modeling.
Multivariate-GARCH;CCC(constant conditional correlation);DCC(dynamic conditional correlation);
 Cited by
Value at Risk의 사후검증을 통한 다변량 시계열자료의 차원축소 방법의 비교: 사례분석,이대수;송성주;

응용통계연구, 2011. vol.24. 4, pp.597-607 crossref(new window)
금융시계열 분석을 위한 다변량-GARCH 모형에서 비대칭-CCC의 도입 및 응용,박란희;최문선;황선;

응용통계연구, 2011. vol.24. 5, pp.821-831 crossref(new window)
다변량 GARCH 모형의 CCC 및 ECCC 비교분석,이승연;황선영;

응용통계연구, 2014. vol.27. 7, pp.1219-1228 crossref(new window)
A recent overview on financial and special time series models, Korean Journal of Applied Statistics, 2016, 29, 1, 1  crossref(new windwow)
Asymmetric CCC Modelling in Multivariate-GARCH with Illustrations of Multivariate Financial Data, Korean Journal of Applied Statistics, 2011, 24, 5, 821  crossref(new windwow)
Comparison of Dimension Reduction Methods for Time Series Factor Analysis: A Case Study, Korean Journal of Applied Statistics, 2011, 24, 4, 597  crossref(new windwow)
송유진, 최문선, 황선영 (2008). 차원축소를 통한 시계열의 변동성 분석 및 응용, <한국 통계학회 논문집>, 15, 825-835

황선영, 박진아 (2005). VaR(Value at Risk) for Korean financial time sereis, <한국 데이터정보과학회지>, 16, 283-288

황선영, 최문선, 도종두 (2009). 사후검증(Back-testing)을 통한 다변량-GARCH 모형의 평가: 사례분석, <응용통계연구>, 22, 261-270

Bauwens, L., Laurent, S. and Rombouts, J. V. K. (2006). Multivariate GARCH models: A survey, Journal of Applied Econometrics, 21, 79-109 crossref(new window)

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327 crossref(new window)

Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates: A multivariate generalized ARCH model, The Review of Economics and Statistics, 72, 498-505 crossref(new window)

Bollerslev, T., Engle, R. F. and Wooldridge, J. M. (1998). A capital asset pricing model with time-varying covariances, Journal of Political Economy, 96, 116-131 crossref(new window)

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, 987-1007 crossref(new window)

Engle, R. F. (2002). Dynamic conditional correlation: A simple class of multivariate GARCH models, Journal of Business and Economic Statistics, 20, 339-350 crossref(new window)

Engle, R. F. and Kroner, K. F. (1995). Multivariate simultaneous generalized ARCH, Econometric Theory, 11, 122-150 crossref(new window)

Tsay, R. S. (2005). Analysis of Financial Time Series, John Wiley & Sons, New York

Tse, Y. K. and Tsui, A. K. C. (2002). A multivariate GARCH model with time-varying correlations, Journal of Business and Economic Statistics, 20, 351-362 crossref(new window)