Recurrence Plots as an Exploratory Graphical Tool for Evaluating Randomness

- Journal title : Korean Journal of Applied Statistics
- Volume 22, Issue 6, 2009, pp.1153-1165
- Publisher : The Korean Statistical Society
- DOI : 10.5351/KJAS.2009.22.6.1153

Title & Authors

Recurrence Plots as an Exploratory Graphical Tool for Evaluating Randomness

Jang, Dae-Heung;

Jang, Dae-Heung;

Abstract

There are many traditional statistical tests for randomness. We can consider recurrence plots as an exploratory graphical tool for evaluating randomness.

Keywords

Pseudo-random number generator;randomness test;recurrence plots;

Language

English

Cited by

References

1.

장대흥 (2002). 탐색적 자료분석시 그래프의 활용에 대한 연구, <응용통계연구>, 15, 433–448

2.

Castro, J. C. H., Sierra, J. M., Seznec, A., Izquierdo, A. and Ribagorda, A. (2005). The strict avalanche criterion randomness test, Mathematics and Computers in Simulation, 68, 1–7

3.

Chatterjee, S., Yilmaz, M., Habibullah, M. and Laudato, M. (2000). An approximate entropy test for randomness, Communications in Statistics-Theory and Methods, 29, 655–675

4.

Eckmann, J. P., Kamphorst, S. O. and Ruelle, D. (1987). Recurrence plots of dynamical systems, Europhysics Letters, 5, 973–977

5.

Hamano, K. and Kaneko, T. (2007). Correction of overlapping template matching test included in NIST randomness test suite, IEICE Transaction on Fundamentals of Electronics, Communications and Com-puter Sciences, E90-A, 1788–1792

6.

Hamano, K. and Yamamoto, H. (2008). A randomness test based on T-codes, Proceedings in International Symposium on Information Theory and its Applications, 2008

7.

Katos, V. (2005). A randomness test for block ciphers, Applied Mathematics and Computation, 162, 29–35

8.

Kim, C., Choe, G. H. and Kim, D. H. (2008). Tests of randomness by the gambler's ruin algorithm, Applied Mathematics and Computation, 199, 195–210

9.

Marsaglia, G. and Tsang, W. W. (2002). Some difficult-to-pass tests of randomness, Journal of Statistical Software, 7, 3

10.

Marwan, N., Romano, M. C., Thiel, M. and Kurths, J. (2007). Recurrence plots for the analysis of complex systems, Physics Reports, 438, 237–329

11.

Matassini, L., Kantz, H., Holyst, J. and Hegger, R. (2002). Optimizing of recurrence plots for noise reduction, Physical Review E, 65, 021102

12.

Mindlin, G. M. and Gilmore, R. (1992). Topological analysis and synthesis of chaotic time series, Physica D, 58, 229–242

13.

Rukhin, A. L. and Volkovich, Z. (2008). Testing randomness via aperiodic words, Journal of Statistical Computation and Simulation, 78, 1133–1144

14.

Ryabko, B. Y. and Monarev, V. A. (2005). Using information theory approach to randomness testing, Journal of Statistical Planning and Inference, 133, 95–110

15.

Ryabko, B. Y., Stognienko, V. S. and Shokin, Y. I.(2004). A new test for randomness and its application to some cryptographic problem, Journal of Statistical Planning and Inference, 123, 365–376

16.

Tan, S. K. and Guan, S. (2009). Randomness quality of permuted pseudorandom binary sequence, Mathe-matics and Computers in Simulation, 79, 1618–1626

17.

Thiel, M., Romano, M. C., Kurths, J.,. Meucci, R., Allaria, E. and Arecchi, F. T. (2002). Influence of observational noise on the recurrence quantification analysis, Physica D, 171, 138–152

18.

Wang, K., Pei, W., Xia, h. and Cheung. Y. (2008). Pseudo-Random number generator based on asymptotic deterministic randomness, Physics Letters A, 372, 4388–4394