JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Recurrence Plots as an Exploratory Graphical Tool for Evaluating Randomness
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Recurrence Plots as an Exploratory Graphical Tool for Evaluating Randomness
Jang, Dae-Heung;
  PDF(new window)
 Abstract
There are many traditional statistical tests for randomness. We can consider recurrence plots as an exploratory graphical tool for evaluating randomness.
 Keywords
Pseudo-random number generator;randomness test;recurrence plots;
 Language
English
 Cited by
1.
재현그림을 통한 우리나라 주식 자료에 대한 탐색적 자료분석,장대흥;

응용통계연구, 2013. vol.26. 5, pp.807-819 crossref(new window)
2.
재현그림을 통한 우리나라 환율 자료에 대한 탐색적 자료분석,장대흥;

Journal of the Korean Data and Information Science Society, 2013. vol.24. 6, pp.1103-1112 crossref(new window)
1.
Exploratory Data Analysis for Korean Stock Data with Recurrence Plots, Korean Journal of Applied Statistics, 2013, 26, 5, 807  crossref(new windwow)
2.
Exploratory data analysis for Korean daily exchange rate data with recurrence plots, Journal of the Korean Data and Information Science Society, 2013, 24, 6, 1103  crossref(new windwow)
 References
1.
장대흥 (2002). 탐색적 자료분석시 그래프의 활용에 대한 연구, <응용통계연구>, 15, 433–448

2.
Castro, J. C. H., Sierra, J. M., Seznec, A., Izquierdo, A. and Ribagorda, A. (2005). The strict avalanche criterion randomness test, Mathematics and Computers in Simulation, 68, 1–7 crossref(new window)

3.
Chatterjee, S., Yilmaz, M., Habibullah, M. and Laudato, M. (2000). An approximate entropy test for randomness, Communications in Statistics-Theory and Methods, 29, 655–675 crossref(new window)

4.
Eckmann, J. P., Kamphorst, S. O. and Ruelle, D. (1987). Recurrence plots of dynamical systems, Europhysics Letters, 5, 973–977

5.
Hamano, K. and Kaneko, T. (2007). Correction of overlapping template matching test included in NIST randomness test suite, IEICE Transaction on Fundamentals of Electronics, Communications and Com-puter Sciences, E90-A, 1788–1792

6.
Hamano, K. and Yamamoto, H. (2008). A randomness test based on T-codes, Proceedings in International Symposium on Information Theory and its Applications, 2008

7.
Katos, V. (2005). A randomness test for block ciphers, Applied Mathematics and Computation, 162, 29–35 crossref(new window)

8.
Kim, C., Choe, G. H. and Kim, D. H. (2008). Tests of randomness by the gambler's ruin algorithm, Applied Mathematics and Computation, 199, 195–210 crossref(new window)

9.
Marsaglia, G. and Tsang, W. W. (2002). Some difficult-to-pass tests of randomness, Journal of Statistical Software, 7, 3

10.
Marwan, N., Romano, M. C., Thiel, M. and Kurths, J. (2007). Recurrence plots for the analysis of complex systems, Physics Reports, 438, 237–329 crossref(new window)

11.
Matassini, L., Kantz, H., Holyst, J. and Hegger, R. (2002). Optimizing of recurrence plots for noise reduction, Physical Review E, 65, 021102 crossref(new window)

12.
Mindlin, G. M. and Gilmore, R. (1992). Topological analysis and synthesis of chaotic time series, Physica D, 58, 229–242 crossref(new window)

13.
Rukhin, A. L. and Volkovich, Z. (2008). Testing randomness via aperiodic words, Journal of Statistical Computation and Simulation, 78, 1133–1144 crossref(new window)

14.
Ryabko, B. Y. and Monarev, V. A. (2005). Using information theory approach to randomness testing, Journal of Statistical Planning and Inference, 133, 95–110

15.
Ryabko, B. Y., Stognienko, V. S. and Shokin, Y. I.(2004). A new test for randomness and its application to some cryptographic problem, Journal of Statistical Planning and Inference, 123, 365–376 crossref(new window)

16.
Tan, S. K. and Guan, S. (2009). Randomness quality of permuted pseudorandom binary sequence, Mathe-matics and Computers in Simulation, 79, 1618–1626 crossref(new window)

17.
Thiel, M., Romano, M. C., Kurths, J.,. Meucci, R., Allaria, E. and Arecchi, F. T. (2002). Influence of observational noise on the recurrence quantification analysis, Physica D, 171, 138–152

18.
Wang, K., Pei, W., Xia, h. and Cheung. Y. (2008). Pseudo-Random number generator based on asymptotic deterministic randomness, Physics Letters A, 372, 4388–4394 crossref(new window)

19.
Zbilut, J. P. and Webber Jr., C. L. (1992). Embeddings and delays as derived from quantification of recurrence plots, Physics Letters A, 171, 199–203 crossref(new window)

20.
Zbilut, J. P., Zaldivar-Commenges, J. M. and Strozzi, F. (2002). Recurrence quantification based Liapunov exponents for monitoring divergence in experimental data, Physics Letters A, 297, 173–181 crossref(new window)