Advanced SearchSearch Tips
Comparison Study of Time Series Clustering Methods
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Comparison Study of Time Series Clustering Methods
Hong, Han-Woom; Park, Min-Jeong; Cho, Sin-Sup;
  PDF(new window)
In this paper we introduce the time series clustering methods in the time and frequency domains and discuss the merits or demerits of each method. We analyze 15 daily stock prices of KOSPI 200, and the nonparametric method using the wavelet shows the best clustering results. For the clustering of nonstationary time series using the spectral density, the EMD method remove the trend more effectively than the differencing.
Time series;clustering;chaotic map;spectral analysis;wavelet;EMD;
 Cited by
한국특허정보의 통계분석에 관한 연구,엄대호;장영배;정의섭;

정보관리연구, 2010. vol.41. 3, pp.27-44 crossref(new window)
군집분석을 이용한 한반도 해상 특성 분석 및 구역 분류,손고은;변재영;이종호;

Journal of the Korean Data Analysis Society, 2015. vol.17. 4B, pp.2129-2138
A study on electricity demand forecasting based on time series clustering in smart grid, Korean Journal of Applied Statistics, 2016, 29, 1, 193  crossref(new windwow)
김유진 (2009). Comparison study of time series methods, Master thesis, Seoul National University

박민정 (2009). Time-Frequency analysis by multiscale methods with applications to bat signals, Ph.D thesis, Seoul National University

이정현 (2008). Clustering analysis of financial time series using wavelet analysis, Master thesis, Seoul National University

Angelini, L., De Carlo, F., Marangi, C., Pellicoro, M. and Stramaglia, S. (2000). Clustering data by inhomo-geneous chaotic map lattices, Physical Review Letters, 85, 554-557 crossref(new window)

Basalto, N., Bellotti, R., De Carlo, F., Facchi, P. and Pascazio, S. (2005). Clustering stock market companies via chaotic map synchronization, Physica A: Statistical Mechanics and its Applications, 345, 196-206 crossref(new window)

Blatt, M., Domany, E. and Wiseman, S. (1996). Super-paramagnetic clustering of data, Physical Review Letters, 76, 3251-3254 crossref(new window)

Chatfield, C. (1979). Inverse autocorrelations, Journal of Royal Statistical Society Series A, 142, 363-377 crossref(new window)

Flandrin, F., Rilling, G. and Goncalves, P. (2004). Empirical mode decomposition as a filter bank, IEEE Signal Processing Letters, 11, 112-114 crossref(new window)

Galeano, P. and Pena, D. (2000). Multivariate analysis in vector time series, Resenhas, 4, 383-404

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H. (1998). The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series, Proceedings of the Royal Society London A, 454, 903-995 crossref(new window)

Huhtala, Y., Karkkainen, J. and Toivonen, H. (1999). Mining for similarities in aligned time series using wavelets, Data Mining and Knowledge Discovery: Theory, Tools, and Technology, Proceedings of SPIEE, 3695, 150-160 crossref(new window)