Advanced SearchSearch Tips
Contribution of Principal Components Based on the Broken-Stick Model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Contribution of Principal Components Based on the Broken-Stick Model
Kang, Y.J.; Byun, J.H.; Ki, K.Y.;
  PDF(new window)
Frontier (1976) suggested a criterion based on the expected length of ordered random intervals under the Broken-stick model (Barton and David, 1956) to determine the optimal number of principal components retained. It is considered to be one of the methods that provide the most consistent simulation results (Jackson, 1993). This study is aimed to propose a method using the distribution of ordered random intervals to evaluate the contribution of principal components. We also examine several types of Gini indices along with the corresponding Lorenz curves to visualize the overall equivalence of those contributions.
Contribution of principal components;Broken-stick model;Lorenz curve;Gini index;
 Cited by
Almorza, D. A. and Garcia, M. H. (2008). Results of exploratory data analysis in the broken Stick model, Journal of Applied Statistics, 35, 979-983. crossref(new window)

Anand, S. (1983). Inequality and Poverty in Malaysia, Oxford University Press, New York.

Anderson, T. W. (1963). An asymptotic expansion for the distribution of the latent roots of an estimated covariance matrix, The Annals of Mathematical Statistics, 36, 1153-1173. crossref(new window)

Bartlett, M. S. (1950). Tests of significance in factor analysis, British Journal of Psychology(Statistical section), 3, 77-85. crossref(new window)

Barton, D. E. and David, F. N. (1956). Some notes on ordered random intervals, Journal of the Royal Statistical Society, Series B, 18, 79-94.

Benasseni, J. (2005). A concentration study of principal components, Journal of Applied Statistics, 32, 947-957. crossref(new window)

Box, G. E. P., Hunter, W. G., MacGregor, J. F. and Erjavaz, J. (1973). Some problems associated with the analysis of multiresponse data, Technometrics, 15, 33-51. crossref(new window)

Cattell, R. B. (1966). The scree test for the number of factors, Multivariate Behavioral Research, 1, 245-276. crossref(new window)

Frontier, S. (1976). Etude de la decroissance des valeurs propres dans une analyse en composantes principales: Comparison avec le modele du baton brise, Journal of Experimental Marine Biology and Ecology, 25, 67-75. crossref(new window)

Gini, C. (1912). Variabilita e mutabilita, Reprinted in Memorie di metodologica statistica (Ed. Pizetti E, Salvemini, T). Libreria Eredi Virgilio Veschi, 1955, Rome.

Hastie, T., Buja, A. and Tibshirani, R. (1995). Penalized discriminant analysis, The Annals of Statistics, 23, 73-102. crossref(new window)

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis, Psychometrika, 30, 179-185. crossref(new window)

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology, 24, 417-441. crossref(new window)

Jackson, D. A. (1993). Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches, Ecological Society of America, 74, 2204-2214.

Jackson, J. E. (1959). Quality control methods for several related variables, Technometrics, 1, 359-377. crossref(new window)

Jackson, J. E. (1960). Multivariate analysis illustrated by Nike-Hercules, In Proceedings of the Thirtieth Conference on the Design of Experiments in Army Research, Development, and Testing, U.S. Army Research Office, Durham, N.C. 307-327.

Jackson, J. E. (1991). A User's Guide to Principal Components, John Wiley & Sons, INC.

Jolliffe, I. T. (1972). Discarding variables in a principal component analysis I: Artificial data, Journal of the Royal Statistical Society, Series C (Applied Statistics), 21, 160-173.

King, R. J. and Jackson, D. A. (1999). Variable selection in large environmental data sets using principal components analysis, Environmetrics, 10, 67-77. crossref(new window)

Lambert, Z. V., Wildt, A. R. and Durand, R. M. (1990). Assessing sampling variation relative to number-of-factors criteria, Educational and Psychological Measurement, 50, 33-48. crossref(new window)

Lorenz, M. O. (1905). Methods of measuring the concentration of wealth, American Statistical Association, 9, 209-219. crossref(new window)

MacArthur, R. H. (1957). On the relative abundance of bird species, In Proceedings of the National Academy of Sciences USA, 43, 293-295. crossref(new window)

Pielou, E. C. (1975). Ecological Diversity, Willy, New York.

Richard, C. and Alain, G. (2007). Component retention in principal component analysis with application to cDNA microarray data, Biology Direct, 2, 2. crossref(new window)

Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations, Psychometrika, 41, 321-327. crossref(new window)

Zwick, W. R. and Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain, Psychological Bulletin, 99, 432-442. crossref(new window)