Advanced SearchSearch Tips
Evaluation of EBLUP-Type Estimator Based on a Logistic Linear Mixed Model for Small Area Unemployment
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Evaluation of EBLUP-Type Estimator Based on a Logistic Linear Mixed Model for Small Area Unemployment
Kim, Seo-Young; Kwon, Soon-Pil;
  PDF(new window)
In Korea, the small area estimation method is currently unpopular in generating o cial statistics. Because it may be difficult to determine the reliability for small area estimation, although small area estimation ha a sufficiently good advantage to generate small area statistics for Korea. This paper inspects the method of making small area unemployment through the small area estimation method. To estimate small area unemployment we used an EBLUP-type estimator based on a logistic linear mixed model. To evaluate the EBLUP-type estimator we accomplished the real data analysis and simulation experiment from the population and housing census data. In addition, small area estimates are compared to large sample survey estimates. We found the provided method in this paper is highly recommendable to generate small area unemployment as the official statistics.
Small area estimation;unemployment;generalized linear mixed model;
 Cited by
김달호 (2005). , 자유아카데미.

김서영, 권순필 (2009). <고용통계 소지역 추정 연구 I>, 통계개발원 보고서.

김서영, 권순필 (2010). Time series & cross sectional 모형 기반 소지역 추정 사례연구, <통계연구>, 28-43.

김수택, 고석남, 김상대 (2008). 소지역 노동통계의 효율적 추정방안- 실업률을 중심으로-, <산업관계연구>, 18, 53-76.

김정숙, 황희진, 신기일 (2008). 이웃정보시스템을 이용한 공간 소지역 추정량 비교, <응용통계연구>, 21, 855-866.

박종태, 이상은 (2001). 소지역 추정법에 관한 비교 연구, <한국데이터정보고학회지>, 12, 47-55.

이계오 (2000). 시군구 실업자 추정을 위한 소지역 추정법, <응용통계연구>, 13, 276-286.

이상은 (2006). 공간통계량을 활용한 베이지안 자기포아송 모형을 이용한 소지역 통계, <응용통계연구>, 19, 424-430.

정연수, 이계오, 이우일 (2003). 시군구 실업자 통계추정을 위한 설계기반 간접추정법, <응용통계연구>, 16, 1-14.

통계청 (2008).

Brown, G., Chambers, R., Heady, P. and Heasam, H. (2001). Evaluation of small area estimation methods-an application to the unemployment estimates from the UK LFS. In Proceedings of Statistics Canada Symposium Ottawa, October 2001.

Fay, R. E. and Herriot, R. A. (1979). Estimates of income for small places: An application of James-Stein procedures to census data, Journal of the American Statistical Association, 74, 269-277. crossref(new window)

Gelfand, A. E. and Smith, A. F. M. (1991). Gibbs sampling for marginal posterior expectations, Communications in Statistics-Theory and Methods, 20, 1747-1766. crossref(new window)

Heady, P., Clarke, P., Brown, G., Eillis, K., Heasman, D., Hennell, S., Longhurst, J. and Mitchell, B. (2003). Model-based small area estimation series NO.2: Small area estimation project report, Office for National Statistics (UK) publication.

KOSIS (2010).

Molina, I., Saei, A. and Lombardia, M. J. (2007). Samll area estimates of labour force participation under a multinomial logit mixed model, Journal of the Royal Statistical Society: Series A, 170, 975-1000. crossref(new window)

ONS (2009). Model-Based Estimates of ILO Unemployment for UA/LADs in great Britain Guide for Users.

Rao, J. N. K (2003). Small Area Estimation, Wiley.

Rao, J. N. K. and Yu, M. (1994). Small area estimation by combining time series and cross-sectional data, The Canadian Journal of Statistics, 22, 511-528. crossref(new window)

Saei, A. and Chambers, R. (2003a). EBLUP-type estimate of small area parameters based on logistic models, Working paper of University of Southampton, July 2003.

Saei, A. and Chambers, R. (2003b). Small area estimation: A review of methods based on the application of mixed models, Working paper of University of Southampton, September 2003.

Saei, A. and McGilchrist, C. (1998). Longitudinal threshold models with random components, The Statistician (JRSS Series D), 47, 365-375.

Tiller, R. B. (1992). Time sereies modeling of sample survey data from the U.S.Current Population Survey, Journal of Official Statistics, 8, 149-166.

You, Y., Rao, J. N. K. and Gambino, J. (2003). Model-based unemployment rate estimation for the canadian labour force survey: A Hierarchical bayes approach, Statistics Canada, 29, 25-32.