Advanced SearchSearch Tips
The Establishment of a High Resolution(1Km×1Km) Wind Energy Map Based on a Statistical Wind Field Model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Establishment of a High Resolution(1Km×1Km) Wind Energy Map Based on a Statistical Wind Field Model
Kim, Hea-Jung; Kim, Hyun-Sik; Choi, Young-Jean; Byon, Jae-Young;
  PDF(new window)
This paper details a method for establishing a wind energy map having() resolution. The map is essential for measurement and efficiency-testing of wind energy resources and wind site analysis. To this end, a statistical wind field model is estimated that covers 345,682 regions obtained by lattices made over South Korea. The paper derives various characteristics of a regional wind energy resource under the statistical wind field model and estimates them to construct the wind energy map. Kolmogorov-Smirnov test, based on TMY(typical meteorological year) wind data of 76 weather station areas, shows that a Log-normal model is adequate for the statistical wind field model. The model is estimated by using the wind speed data of 345,682 regions provided by the National Institute of Meteorological Research(NIMR). Various wind energy statistics are studied under the Log-normal wind field model. As an application, the wind energy density(W) map of South Korea is constructed with a resolution of and its utility for the wind site analysis is discussed.
Statistical wind field model;Wind energy map; resolution;Log-normal model;TMY wind data;Mean wind energy density;
 Cited by
GIS를 이용한 풍력발전단지 최적입지 선정방법에 관한 연구,전상희;안승만;최영진;성효현;

신재생에너지, 2011. vol.7. 3, pp.83-91 crossref(new window)
남한전역 1Km×1Km 격자지점에 대한 수치기상모의풍속의 정확도 향상을 위한 통계적 보정법,김혜중;김현식;최영진;이승우;서범근;

응용통계연구, 2011. vol.24. 6, pp.1225-1235 crossref(new window)
칼만필터기법에 의한 풍력예측시스템의 정확도 향상에 관한 연구,김혜중;정선;최영진;이승우;서범근;

Journal of the Korean Data Analysis Society, 2011. vol.13. 5, pp.2323-2333
A Statistical Tuning Method to Improve the Accuracy of 1Km×1Km Resolution-Wind Data of South Korea Generated from a Numerical Meteorological Model, Korean Journal of Applied Statistics, 2011, 24, 6, 1225  crossref(new windwow)
기상청 국립기상연구소 (2009). 한반도 풍력자원지도.

김현구, 최재우, 손정봉, 정우식, 이화운 (2003). 풍력발전 단지조성을 위한 바람환경 분석, Journal of Korean Society for Atmospheric Environment, 19, 745–756.

김혜중, 곽화륜, 최영진, 변재영 (2010). 로그정규풍속모형에 의한 풍력자원의 특성추론 및 응용에 관한 연구, Jourrnal of the Korean Data Analysis Society, 9, 2761–2772.

김혜중, 정선, 최영진, 김규랑, 정영림 (2009). 한반도바람자원의 TMY(typical meteorolo-gical year) 구축알고 리즘에 관한 연구, <응용통계연구>, 22, 943–960. crossref(new window)

대기환경연구회 (2003). <대기환경개론>, 신광문화사, 179–181.

서은경, 윤준희, 박영산 (2009). 북한 지역에서의 30년 동안의 평균바람지도, 30, 845–854. crossref(new window)

정승환, 박만식, 김기환 (2010). 풍속자료의 공간예측, <응용통계연구>, 23, 345–356.

지식경제부 (2008). 제 1차 국가에너지 기본계획(2008–2030), <제3차 국가에너지위원회>, 의안번호 제 1호, 179.

Garcia, A., Torres, J. L., Prieto, E. and De Francisco, A. (1998). Fitting wind speed distributions: A case study, Solar Energy, 62, , 130–144.

Jamil, M., Parsa, S. and Majidi, M. (1995). Wind power statistics and evaluation of wind energy density, Renewable Energy, 6, 623–628.

Mathew, S., Pandey, K. P. and Kumar. V. A. (2002). Analysis of Wind regimes for eenergy estimation, Renewable Energy, 25, 381–399.

NREL(National Renewable Energy Laboratory) (1986). Wind Energy Resource Atlas of the United States, index.html.

Panda, R. K., Sarkar, T. K. and Bhattacharya, A. K. (1990). Stochastic study of wind energy potential of India, Energy, 15, 921–930.

Petersen, E. L., Mortensen, N. G., Landberg, L., Hojstrup, J. and Frank, H. P. (1997). Wind Power Meteorology, Riso-I-1206(EN), Riso National Labratory, Roskilde, Denmark.

Press, S. J. (2005). Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference, 2nd ed., Dover Publications, New York.

Scerri, E. and Farrugia, R. (1996). Wind data evaluation in the Maltase Islands, Renewable Energy, 7, 109–114.