JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Trimmed LAD Estimators for Multidimensional Contingency Tables
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Trimmed LAD Estimators for Multidimensional Contingency Tables
Choi, Hyun-Jip;
  PDF(new window)
 Abstract
This study proposes a trimmed LAD(least absolute deviation) estimators for multi-dimensional contingency tables and suggests an algorithm to estimate it. In addition, a method to determine the trimming quantity of the estimators is suggested. A Monte Carlo study shows that the propose method yields a better trimming rate and coverage rate than the previously suggest method based on the determinant of the covariance matrix.
 Keywords
Contingency tables;log-linear models;weighted LAD estimator;trimmed LAD estimator;
 Language
Korean
 Cited by
 References
1.
이동희, 정병철 (2010). 붓스트랩을 활용한 최적 절사공간중위수 추정량, <응용통계연구>, 23, 375–382. crossref(new window)

2.
최현집 (2003). 범주형 자료 분석을 위한 LAD 추정량, <응용통계연구>, 16, 55–69. crossref(new window)

3.
Barrodale, I. and Roberts, F. D. K. (1973). An improved algorithm for discrete $l_1 $linear approximation, SIAM Journal of Numerical Analysis, 10, 839–848.

4.
Birkes, D. and Dodge, Y. (1993). Alternative Methods of Regression, John Wiley & Sons, Inc.

5.
Choi, H. J. (2008). Estimating LAD regression coefficients with best subset points, Communications in Statistics, Simulation and Computation, 37, 1799–1809.

6.
Godalize, A. (1991). Best approximations to random variables based on trimming procedures, Journal of Approximation Theory, 64, 162–180.

7.
Grizzle, J. E., Stamer, F. and Koch, G. G. (1969). Analysis of categorical data by linear models, Biometrics, 25, 489–504.

8.
Hadi, A. S. and Luceno, A. (1997). Maximum trimmed likelihood estimators: A unified approach, example, and algorithms, Computational Statistics and Data Analysis, 25, 251–272.

9.
Koenker, R.W. and d'Orey (1987). Computing regression quantiles, Journal of the Royal Statistical Society, Series C(Applied Statistics), 36, 383–393.

10.
Mosteller, F. and Parunak, A. (1985). Identifying extreme cells in a sizable contingency table: Probabilistic and exploratory approaches, In Exploring Data Tables, Trends and Shape, edited by Hoaglin, D. C., Mosteller, F. and Tukey, J. W., John Wiley & Sons, New York, 189–224.

11.
Rousseeuw, P. J. and Driessen, K. (2006). Computing LTS regression for large data sets, Data Mining and Knowledge Discovery, 12, 29–45.

12.
Schlossmacher, E. J. (1973). An iterative technique for absolute deviations curve fitting, Journal of the American Statistical Association, 68, 857–859.

13.
Shane, K. V. and Simonoff, J. S. (2001). A robust approach to categorical data analysis, Jounal of Computational and Graphical Statistics, 10, 135–157.

14.
Vandev, D. L. (1995). Computing of trimmed $L_1$ median, In Multidimensional Analysis in Behavioral Sciences, Philosopic to Technical, 152–157.