JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Determining System for the Category of Need in Long-Term Care Insurance System using Decision Tree Model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Determining System for the Category of Need in Long-Term Care Insurance System using Decision Tree Model
Han, Eun-Jeong; Kwak, Min-Jeong; Kan, Im-Oak;
  PDF(new window)
 Abstract
National long-term care insurance started in July, 2008. We try to make up for weak points and develop a long-term care insurance system. Especially, it is important to upgrade the rating model of the category of need for long-term care continually. We improve the rating model using the data after enforcement of the system to reflect the rapidly changing long-term care marketplace. A decision tree model was adpoted to upgrade the rating model that makes it easy to compare with the current system. This model is based on the first assumption that, a person with worse functional conditions needs more long-term care services than others. Second, the volume of long-term care services are de ned as a service time. This study was conducted to reflect the changing circumstances. Rating models have to be continually improved to reflect changing circumstances, like the infrastructure of the system or the characteristics of the insurance beneficiary.
 Keywords
Long term care insurance;decision tree model;category of need for long-term care;
 Language
Korean
 Cited by
1.
Rasch 모형을 이용한 노인장기요양보험 대상자의 기능상태 평가 연구,이성건;

Journal of the Korean Data Analysis Society, 2012. vol.14. 5, pp.2409-2416
 References
1.
강임옥, 한은정 (2009). 노인장기요양 서비스량 분석 및 등급결정모형 개선방안, <국민건강보험공단 건강보험정책연구원>.

2.
강현철, 한상태, 최종후, 김차용, 김은석, 김미경 (1999). SAS Enterprise Miner를 이용한 데이터 마이닝 -방법론 및 활용-, 자유아카데미.

3.
공적노인요양보장추진기획단, 보건복지가족부 (2004). 공적노인요양보장체계 개발연구(II) -평가판정체계 및 수가 급여체계-.

4.
국민건강보험공단 (2008). 장기요양서비스량 측정 및 기준 개발 연구.

5.
국민건강보험공단 (2009). 제도시행 이후 주요 성과.

6.
보건복지가족부 (2007). 노인장기요양제도 등급판정도구 요양인정점수 산출 통계기법 연구 최종보고서.

7.
선우덕, 이수형, 손창균 등 (2008). 노인장기요양보장체계의 현황과 개선방안, 보건사회연구원, <한국보건사회연구원>.

8.
최종후, 한상태, 강현철, 김은석, 김미경, 이성건 (2000). SAS Enterprise Miner를 이용한 데이터마이닝-기능과 사용법-, 자유아카데미.

9.
통계청 (2008). 2008 고령자 통계, 서울.

10.
한상태, 강현철, 이성건, 정요천 (2004). 교차판매(Cross-Sell) 스코어링 모형 개발, <응용통계연구>, 17, 229-238. crossref(new window)

11.
한은정, 송기준, 김동건 (2009a). Random Forests 기법을 이용한 백내장 예측모형-일개 대학병원 건강검진 수검 자료에서-, <응용통계연구>, 22, 771-780.

12.
한은정, 이정석, 김동건, 강임옥 (2009b). 데이터마이닝 기법을 활용한 노인장기요양급여 권고모형 개발, <응용통계연구>, 22, 1229-1237. crossref(new window)

13.
Breiman, L. (2001). Random forest, Machine Learning, 45, 5-32. crossref(new window)

14.
Breiman,L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and regression Trees, Pacific Grove.

15.
SAS Institute (2003). Data Mining Using SAS Enterprise Miner: A Case Study Approach, SAS Institute INC.

16.
SAS Institute INC. 홈페이지 http://www.sas.com/apps/demosdownloads/emtreedesktp