JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Type I Analysis by Projections
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Type I Analysis by Projections
Choi, Jae-Sung;
  PDF(new window)
 Abstract
This paper discusses how to get the sums of squares due to treatment factors when Type I Analysis is used by projections for the analysis of data under the assumption of a two-way ANOVA model. The suggested method does not need to calculate the residual sums of squares for the calculation of sums of squares. There-fore, the calculation is easier and faster than classical ANOVA methods. It also discusses how eigenvectors and eigenvalues of the projection matrices can be used to get the calculation of sums of squares. An example is given to illustrate the calculation procedure by projections for unbalanced data.
 Keywords
Projection;Type I Analysis;unbalanced data;projection matrix;eigenvector;eigenvalue;
 Language
Korean
 Cited by
1.
사영을 이용한 제2종 분석,최재성;

Journal of the Korean Data and Information Science Society, 2012. vol.23. 6, pp.1155-1163 crossref(new window)
2.
이원 분산성분의 사영분석,최재성;

Journal of the Korean Data and Information Science Society, 2014. vol.25. 3, pp.547-554 crossref(new window)
3.
사영에 의한 제3종 제곱합,최재성;

Journal of the Korean Data and Information Science Society, 2014. vol.25. 4, pp.799-805 crossref(new window)
4.
사영에 의한 확률효과모형의 분석,최재성;

Journal of the Korean Data and Information Science Society, 2015. vol.26. 1, pp.31-39 crossref(new window)
5.
균형불완비블록설계의 혼합효과에서 블록간 정보,최재성;

응용통계연구, 2015. vol.28. 2, pp.151-158 crossref(new window)
6.
균형불완비블럭설계의 사영분석,최재성;

Journal of the Korean Data and Information Science Society, 2015. vol.26. 2, pp.347-354 crossref(new window)
7.
지분계획의 분산성분,최재성;

응용통계연구, 2015. vol.28. 6, pp.1093-1101 crossref(new window)
1.
Estimable functions of mixed models, Korean Journal of Applied Statistics, 2016, 29, 2, 291  crossref(new windwow)
2.
The analysis of random effects model by projections, Journal of the Korean Data and Information Science Society, 2015, 26, 1, 31  crossref(new windwow)
3.
Projection analysis for two-way variance components, Journal of the Korean Data and Information Science Society, 2014, 25, 3, 547  crossref(new windwow)
4.
Type III sums of squares by projections, Journal of the Korean Data and Information Science Society, 2014, 25, 4, 799  crossref(new windwow)
5.
Projection analysis for balanced incomplete block designs, Journal of the Korean Data and Information Science Society, 2015, 26, 2, 347  crossref(new windwow)
6.
Variance Components of Nested Designs, Korean Journal of Applied Statistics, 2015, 28, 6, 1093  crossref(new windwow)
7.
Type II analysis by projections, Journal of the Korean Data and Information Science Society, 2012, 23, 6, 1155  crossref(new windwow)
8.
Interblock Information from BIBD Mixed Effects, Korean Journal of Applied Statistics, 2015, 28, 2, 151  crossref(new windwow)
 References
1.
최재성 (2008). 반복측정의 다가 반응자료에 대한 일반화된 주변 로짓모형, <응용통계연구>, 32, 621-630.

2.
Corbeil, R. R. and Searle, S. R. (1976). A comparison of variance component estimators, Biometrics, 32, 779-791. crossref(new window)

3.
Graybill, F. A. (1976). Theory and Application of the Linear Model, Wadsworth, California.

4.
Milliken, G. A. and Johnson, D. E. (1984). Analysis of Messy Data, Van Nostrand Reinhold, New York.

5.
Montgomery, D. C. (1976). Design and Analysis of Experiments, John Wiley & Sons, New York.

6.
Searle, S. R., Casella, G. and McCulloch, C. E. (1992). Variance Components, John Wiley & Sons, New York.

7.
Steel, R. G. and Torrie, J. H. (1980). Principles and Procedures of Statistics, McGraw-Hill, New York.