Advanced SearchSearch Tips
Bayesian Inference for the Zero In ated Negative Binomial Regression Model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Bayesian Inference for the Zero In ated Negative Binomial Regression Model
Shim, Jung-Suk; Lee, Dong-Hee; Jun, Byoung-Cheol;
  PDF(new window)
In this paper, we propose a Bayesian inference using the Markov Chain Monte Carlo(MCMC) method for the zero inflated negative binomial(ZINB) regression model. The proposed model allows the regression model for zero inflation probability as well as the regression model for the mean of the dependent variable. This extends the work of Jang et al. (2010) to the fully defiend ZINB regression model. In addition, we apply the proposed method to a real data example, and compare the efficiency with the zero inflated Poisson model using the DIC. Since the DIC of the ZINB is smaller than that of the ZIP, the ZINB model shows superior performance over the ZIP model in zero inflated count data with overdispersion.
Bayesian Model Selection;Latent variable;ZINB(Zero-In ated Negative Binomial);MCMC (Markov Chain Monte Carlo);
 Cited by
허들모형에 대한 베이지안 추론,선지영;심정숙;정병철;

Journal of the Korean Data Analysis Society, 2014. vol.16. 4B, pp.1837-1847
임아경, 오만숙 (2006). 영과잉 포아송 회귀모형에 대한 베이지안 추론: 구강 위생 자료에의 적용, <응용통계연구>, 16, 505-519. crossref(new window)

장학진, 강윤희, 이수범, 김성욱 (2008). 영과잉 회귀모형에 대한 베이지안 분석, <응용통계연구>, 21, 603-613. crossref(new window)

Cameron, A. C. and Trivedi, P. K. (1998). Regression Analysis of Count Data, Cambridge University Press, Cambridge.

Congdon, P. (2005). Bayesian Models for Categorical Data, John Wiley & Sons, New York.

Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004). Bayesian Data Analysis, Chapman & Hall, BocaRaton.

Ghosh, S. K., Mukhopadhyay, P. and Lu, J. (2006). Bayesian analysis of zero-inflated regression models, Journal of Statistical Planning and Inference, 136, 1360-1375. crossref(new window)

Gurmu, S. and Trivedi, P. K. (1996). Excess zeros in count models for recreational trips, Journal of Business and Economic Statistics, 14, 469-477. crossref(new window)

Jang, H. J., Lee, S. B. and Kim, S. W. (2010). Bayesian analysis for zero-inflated regression models with the power prior: Aapplications to road safety countermeasures, Accident Analysis and Prevention, 42, 540-547. crossref(new window)

Kass, R. E. and Raftery, A. E. (1995). Bayes factors, Journal of the American Statistical Association, 90, 773-795. crossref(new window)

Lambert, D. (1992). Zero-inflated poisson regression with an application to defects in manufacturing, Technometrics, 34, 1-14. crossref(new window)

Peter, D. H. (2009). A First Course in Bayesian Statistical Methods, Springer.

Ridout, M. S., Demetrio, C. G. B. and Hinde, J. P. (1998). Models for count data with many zeros, Proceedings of the XIX th International Biometrics Conference, Cape Town, Invited Papers, 179-192.

Ridout, M. S., Hinde, J. and Demetrio, C. G. B. (2001). A score test for testing a zero-inflated poisson regression model against zero-inflated negative binomial alternatives, Biometrics, 57, 219-223. crossref(new window)

Rodrigues, J. (2003). Bayesian analysis of zero-inflated distributions, Communications in Statistics, Theory and Methods, 32, 281-289. crossref(new window)

Seller, C., Stoll, J. R. and Chavas, J. P. (1985). Validation of empirical measures of welfare change: A comparison of nonmarket techniques, Land Economics, 61, 156-175. crossref(new window)

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society: Series B, 64, 583-639. crossref(new window)

Winkelmann, R. (2003). Econometric Analysis of Count Data, Springer, New York.

Yau, K. K. W., Wang, K. and Lee, A. H. (2003). Zero-inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros, Biometrical, 45, 437-452. crossref(new window)