Advanced SearchSearch Tips
Performance Comparison of Classication Methods with the Combinations of the Imputation and Gene Selection Methods
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Performance Comparison of Classication Methods with the Combinations of the Imputation and Gene Selection Methods
Kim, Dong-Uk; Nam, Jin-Hyun; Hong, Kyung-Ha;
  PDF(new window)
Gene expression data is obtained through many stages of an experiment and errors produced during the process may cause missing values. Due to the distinctness of the data so called `small n large p`, genes have to be selected for statistical analysis, like classification analysis. For this reason, imputation and gene selection are important in a microarray data analysis. In the literature, imputation, gene selection and classification analysis have been studied respectively. However, imputation, gene selection and classification analysis are sequential processing. For this aspect, we compare the performance of classification methods after imputation and gene selection methods are applied to microarray data. Numerical simulations are carried out to evaluate the classification methods that use various combinations of the imputation and gene selection methods.
Gene expression;imputation;gene selection;classication;
 Cited by
Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., Bordrick, J. C., Sabet, H., Tran, T., Yu, X., Powell, J. I., Yang, L., Marti, G. E., Moore, T. Jr. J. H., Lu, L., Lwis, D. B., Tibshirani, R., Sherlock, G., Chan, W. C., Greiner, T. C., Weisenburger, D. D., Armitage, J. O., Warnke, R., Levy, R., Wilson, W., Grever, M. R., Byrd, J. C., Botstein, D., Brouwn, P. O. and Staudt, L. M. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling, Nature, 403, 503-511. crossref(new window)

Dudoit, S., Fridlyand, J. and Speed, T. P. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data, Journal of the American Statistical Association, 97, 77-87. crossref(new window)

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, K. P., Coller, H., Loh, M., Downing, J. R., Caligiuri, M. A., Bloom eld, C. D. and Lander, E. S. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, Science, 286, 531-537. crossref(new window)

Guyon, I., Weston, J. and Barnhill, S. (2002). Gene selection for cancer classification using support vector machines, Machine Learning, 46, 389-422. crossref(new window)

Khan, J., Wei, J., Ringner, M., Saal, L., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C., Peterson, C. and Meltzer, P. S. (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks, Nature Medicine, 7, 673-679. crossref(new window)

Kim, H., Golub, G. H. and Park, H. (2005). Missing value estimation for DNA microarray gene expression data: Local least squares imputation, Bioinformatics, 21, 187-198. crossref(new window)

Lee, J. W., Lee, J. B., Park, M. and Song, S. H. (2005). An extensive comparison of recent classification tools applied to microarray data, Computational Statistics and Data Analysis, 48, 869-885. crossref(new window)

Liew, A. W., Law, N. and Yan, H. (2010). Missing value imputation for gene expression data: computational techniques to recover missing data from available information, Briefings in Bioinformatics, 12, 498-513.

Liu, X., Krishnan, A. and Mondry, A. (2005). An entropy-based gene selection method for cancer classification using microarray data, BMC Bioinformatics, 6, 76. crossref(new window)

Nguyen, D. V., Wang, N. and Carroll, R. J. (2004). Evaluation of missing value estimation for microarray data, Journal of Data Science, 2, 347-370.

Oba, S., Sato, M., Takemasa, I., Monden, M., Matsubara, K. and Ishii, S. (2003). A Bayesian missing value estimation method for gene expression profile data, Bioinformatics, 19, 2088-2096. crossref(new window)

Scheel, I., Aldrin, M., Glad, I. K., Sorum, R., Lyng, H. and Frigessi, A. (2005). The influence of missing value imputation on detection of differentially expressed genes from microarray data, Bioinformatics, 21, 4272-4279. crossref(new window)

Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression, Proceedings of the National Academy of Sciences, 99, 6567-6572. crossref(new window)

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D. and Altman, R. B. (2001). Missing value estimation methods for DNA microarrays, Bioinformatics, 17, 520-525. crossref(new window)