JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Model Validation Methods of Population Pharmacokinetic Models
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Model Validation Methods of Population Pharmacokinetic Models
Lee, Eun-Kyung;
  PDF(new window)
 Abstract
The result of the analysis of a population pharmacokinetic model can directly influence the decision of the dose level applied to the targeted patients. Therefore the validation procedure of the final model is very important in this area. This paper reviews the validation methods of population pharmacokinetic models from a statistical viewpoint. In addition, the whole procedure of the analysis of population pharmacokinetics, from the base model to the final model (that includes various validation procedures for the final model) is tested with real clinical data.
 Keywords
Population pharmacokinetics;mixed effect model;nonlinear function;model validation;
 Language
Korean
 Cited by
 References
1.
이은경 (2010). 집단 약동학 모형에 대한 통계학적 고찰, <응용통계연구>, 23, 511-520.

2.
Brendel, K., Dartois, C., Comets, E., Lemenuel-Diot, A., Laveille, C., Tranchand, B., Girard, P., Laffont, C. M. and Mentre, F. (2007). Are population pharmacokinetic and/or pharmacodynamic models adequately evaluated? A survey of the literature from 2002 to 2004, Clinical Pharmacokinetics, 46, 221-234. crossref(new window)

3.
Efron, B. and Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals and other measures of statistical accuracy, Statistical Science, 1, 54-77. crossref(new window)

4.
Ette, E. I. (1997). Stability and performance of a population pharmacokinetic model, Journal of Clinical Pharmacology, 37, 486-495. crossref(new window)

5.
Ette, E. I. (1998). Statistical graphics in pharmacokinetics and pharmacodynamics: A tutorial, The Annals of Pharmacotherapy, 32, 818-828. crossref(new window)

6.
Ette, E. I., Williams, P. J., Kim, Y. H., Lane, J. R., Liu, M. J. and Capparelli, E. V. (2003). Model approximateness and population pharmacokinetic modeling, Journal of Clinical Pharmacology, 43, 610-623. crossref(new window)

7.
Holford, N. (2005). The visual predictive check-superiority to standard diagnostic(Rorschach) plots [abstr 738] PAGE, http://www.page-meeting.org/?abstract=738.

8.
Holford, N. (2008). Model Evaluation = Visual predictive checks [abstr 1434] PAGE, http://www.pagemeeting.org/?abstract=1434.

9.
Holford, N. G. G. and Peace, K. E. (1992). Results and validation of a population pharmacodynamic models for cognitive effects in Alzheimer patients treated with tacrine, Proceedings of the National Academy of Sciences, 89, 11471-11475. crossref(new window)

10.
Jonsson, E. N. and Karlsson, M. O. (1999). Xpose - an S-plus based population pharmacokinetic/pharmacodynamic model building aid for NONMEM, Computer Methods and Programs in Biomedicine, 58, 51-64. crossref(new window)

11.
Karlsson, M. O. and Savic, R. M. (2007). Diagnosing model diagnostics, Clinical Pharmacology and Thera- peutics, 82, 17-20. crossref(new window)

12.
Kowalski, K. G. and Hutmacher, M. M. (2001). Efficient screening of covariates in population models using Wald's approximation to the likelihood ratio test, Journal of Pharmacokinetics and Pharmacodynam- ics, 28, 253-275. crossref(new window)

13.
Lee, E., Lee, S., Park, D., Ki, K., Lee, E., Lee, D. and Noh, G. (2008). Physicochemical properties, pharmacomikinetics, and pharmacodynamics of a reformulated microemulsion propofol in rats, Anesthesiology, 109, 436-447. crossref(new window)

14.
Liddle, A. R. (2007). Information criteria for astrophysical model selection, Montly Notices of the Royal Astronomical Society: Letters, 377, L74-L78. crossref(new window)

15.
Lindbom, L. (2006). Development, application and evaluation of statistical tools in pharmacometric data analysis, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, 33, 46.

16.
Parke, J., Holford, N. H. G. and Charles, B. G. (1999). A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models, Computer Methods and Programs in Biomedicine, 59, 19-29. crossref(new window)

17.
Post, T. M., Freijer, J. I., Ploeger, B. A. and Danhof, M. (2008). Extensions to the visual predictive check to facilitate model performance evaluation, Journal of Pharmacokinetics and Pharmacodynamics, 35, 185-202. crossref(new window)

18.
Sadray, S., Jonsson, E. N. and Karlsson, M. O. (1999). Likelihood-based diagnostics for influential individuals in non-linear mixed effects model selection, Pharmaceutical Research, 16, 1260-1265. crossref(new window)

19.
Savic, R., Wilkins, J. J. and Karlsson, M. O. (2006). (Un)informativeness of empirical Bayes estimate based diagnostics [abstr T3360] AAPS Journal, 8(S2).

20.
Sheiner, L. B. (1986). Analysis of pharmacokinetic data using parametric models. III. Hypothesis tests and confidence intervals, Journal of Pharmacokinetics and Biopharmaceutics, 14, 539-555. crossref(new window)

21.
US FDA (1999). Guidance for Industry - Population Pharmacokinetics.

22.
Yafune, A. and Ishiguro, M. (1999). Bootstrap approach for constructing confidence intervals for population pharmacokinetic parameters. I: A use of bootstrap standard error, Statistics in Medicine, 18, 581-599. crossref(new window)

23.
Yano, Y., Beal, S. L. and Sheiner, L. B. (2001). Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check, Journal of Pharmacokinetics and Pharmacodynamics, 28, 171-192. crossref(new window)