JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Metropolis-Hastings Expectation Maximization Algorithm for Incomplete Data
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Metropolis-Hastings Expectation Maximization Algorithm for Incomplete Data
Cheon, Soo-Young; Lee, Hee-Chan;
  PDF(new window)
 Abstract
The inference for incomplete data such as missing data, truncated distribution and censored data is a phenomenon that occurs frequently in statistics. To solve this problem, Expectation Maximization(EM), Monte Carlo Expectation Maximization(MCEM) and Stochastic Expectation Maximization(SEM) algorithm have been used for a long time; however, they generally assume known distributions. In this paper, we propose the Metropolis-Hastings Expectation Maximization(MHEM) algorithm for unknown distributions. The performance of our proposed algorithm has been investigated on simulated and real dataset, KOSPI 200.
 Keywords
Incomplete data;Expectation Maximization;Monte Carlo Expectation Maximization;Stochastic Expectation Maximization;Metropolis-Hastings Expectation Maximization;
 Language
Korean
 Cited by
1.
DEA를 활용한 글로벌해운선사의 효율성측정,방희석;강효원;

한국항만경제학회지, 2011. vol.27. 1, pp.213-234
2.
중앙정부보조금과 지방정부 효율성: 패널문턱모형에 의한 비단조적 관계 분석,문광민;

한국행정학보, 2011. vol.45. 4, pp.85-116
3.
평균회귀확률과정을 이용한 2요인 사망률 모형,이강수;조재훈;

응용통계연구, 2015. vol.28. 3, pp.393-406 crossref(new window)
1.
A Two Factor Model with Mean Reverting Process for Stochastic Mortality, Korean Journal of Applied Statistics, 2015, 28, 3, 393  crossref(new windwow)
 References
1.
강만기 (2000). Weibull 분포에서 MEM 알고리즘에 의한 모수 추정, Journal of the Korean Data Analysis Society, 2, 299-305.

2.
김승구 (2003). 자기공명영상분할에서 바이어스 필드 보정을 위한 재귀적 EM 알고리즘, Journal of the Korean Data Society, 5, 323-336.

3.
김승구 (2004). 정규혼합모형의 대용량자료 적합을 위한 일반화 Incremental EM 알고리즘에 대한 연구, Journal of the Korean Data Analysis Society, 6, 1031-1041.

4.
김승구 (2005). 인자분석자 혼합모형을 위한 Incremental EM 알고리즘, Journal of the Korean Data Analysis Society, 7, 1605-1614.

5.
김행선 (2003). 위험관리수단으로서 VaR(Value at Risk)의 추정 방법의 비교 및 분석, 서강대학교 대학원 석사학위 논문.

6.
Celeux, G. and Diebolt, J. (1985). The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem, Computational Statistics, 2, 73-82.

7.
Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM Algorithm, Journal of the Royal Statistical Society B, 39, 1-38.

8.
Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their application, Biometrika, 57, 97-109. crossref(new window)

9.
Ip, E. H. S. (1994). A stochastic EM estimator in the presence of missing data theory and applications, Technical report, Department of Statictics, Stanford University.

10.
Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods, Second edition, Springer.

11.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953). Equations of state calculations by fast computing machines, Journal of Chemical Physics, 21, 1087-1091. crossref(new window)

12.
Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis, Champman and Hall.

13.
Wei, G. C. G. and Tanner, M. A. (1990). A monte carlo implementation of the EM algorithm and the poor man's data augmentation algorithms, Journal of the American Statistical Association, 85, 699-714. crossref(new window)