JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Bootstrapping Composite Quantile Regression
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Bootstrapping Composite Quantile Regression
Seo, Kang-Min; Bang, Sung-Wan; Jhun, Myoung-Shic;
  PDF(new window)
 Abstract
Composite quantile regression model is considered for iid error case. Since the regression coefficients are the same across different quantiles, composite quantile regression can be used to combine the strength across multiple quantile regression models. For the composite quantile regression, bootstrap method is examined for statistical inference including the selection of the number of quantiles and confidence intervals for the regression coefficients. Feasibility of the bootstrap method is demonstrated through a simulation study.
 Keywords
Quantile regression;composite quantile regression;bootstrap;
 Language
Korean
 Cited by
 References
1.
Bradic, J., Fan, J. and Wang, W. (2010). Penalized composite quasi-likelihood for ultrahigh dimensional variable selection, Journal of the Royal Statistical Society, 73, 325-349.

2.
Chen, C. and Wei, Y. (2005). Computational issues for quantile regression, Sankhya: The Indian Journal of Statistics, 67, 399-417.

3.
Kocherginsky, M., He, X. and Mu, Y. (2005). Practical confidence intervals for regression quantiles, Journal of Computational and Graphical Statistics, 14, 41-55. crossref(new window)

4.
Koenker, R. (1984). A note on L-estimates for linear models, Statistics and Probability Letters, 2, 323-325. crossref(new window)

5.
Koenker, R. (1994). Con dence Intervals for Regression Quantiles, Asymptotic Statistics, Springer-Verlag, New York, 349-359.

6.
Koenker, R. and Bassett, G. (1978). Regression quantiles, Econometrica, 46, 33-50. crossref(new window)

7.
Zou, H. and Yuan, M. (2008). Composite quantile regression and the oracle model selection theory, Annals of Statistics, 36, 1108-1126. crossref(new window)