Advanced SearchSearch Tips
Nonparametric Inference for the Recurrent Event Data with Incomplete Observation Gaps
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Nonparametric Inference for the Recurrent Event Data with Incomplete Observation Gaps
Kim, Jin-Heum; Nam, Chung-Mo; Kim, Yang-Jin;
  PDF(new window)
Recurrent event data can be easily found in longitudinal studies such as clinical trials, reliability fields, and the social sciences; however, there are a few observations that disappear temporarily in sight during the follow-up and then suddenly reappear without notice like the Young Traffic Offenders Program(YTOP) data collected by Farmer et al. (2000). In this article we focused on inference for a cumulative mean function of the recurrent event data with these incomplete observation gaps. Defining a corresponding risk set would be easily accomplished if we know the exact intervals where the observation gaps occur. However, when they are incomplete (if their starting times are known but their terminating times are unknown) we need to estimate a distribution function for the terminating times of the observation gaps. To accomplish this, we treated them as interval-censored and then estimated their distribution using the EM algorithm proposed by Turnbull (1976). We proposed a nonparametric estimator for the cumulative mean function and also a nonparametric test to compare the cumulative mean functions of two groups. Through simulation we investigated the finite-sample performance of the proposed estimator and proposed test. Finally, we applied the proposed methods to YTOP data.
Cumulative mean function;interval censoring;observation gaps;recurrent event data;Young Traffic Offenders Program;
 Cited by
Andersen, P. K., Borgan, O. and Gill, R. D. (2003). Statistical Models Based on Counting Processes, Springer, New York.

Cook, R. J. and Lawless, J. F. (2007). The Statistical Analysis of Recurrent Events, Springer, New York.

Cook, R. J., Lawless, J. F. and Nadeau, C. (1996). Robust tests for treatment comparisons based on recurrent event responses, Biometrics, 52, 557-571. crossref(new window)

Farmer, J., Gibler, M., Kavanaugh, R. and Johnson, J. (2000). Preventing traumatic brain injury: An innovative approach to outcomes assessment, Brain Injury, 14, 109-115. crossref(new window)

Kim, Y.-J. and Jhun, M. (2008). Analysis of recurrent event data with incomplete observation gaps, Statistics in Medicine, 27, 1075-1085. crossref(new window)

Lawless, J. F. and Nadeau, C. (1995). Some simple robust methods for the analysis of recurrent events, Technometrics, 37, 158-168. crossref(new window)

Lin, D. Y., Wei, L. J., Yang, I. and Ying, Z. (2000). Semiparametric regression for the mean and rate functions of recurrent events, Journal of the Royal Statistical Society, Series B, 62, 711-730. crossref(new window)

Lindsey, J. and Ryan, L. (1998). Methods for interval censored data: Tutorial in biostatistics, Statistics in Medicine, 17, 219-238. crossref(new window)

McKay, C. and Anderson, K. E. (2010). How to manage falls in community dwelling older adults: A review of the evidence, Postgraduate Medical Journal, 86, 299-306. crossref(new window)

Sun, J., Kim, Y.-J., Hewett, J., Johnson, J. C., Farmer, J. and Gibler, M. (2001). Evaluation of traffic injury prevention programs using counting process approaches, Journal of the American Statistical Association, 96, 469-475. crossref(new window)

Turnbull, B. W. (1976). The empirical distribution function with arbitrarily grouped censored and truncated data, Journal of the Royal Statistical Society, Series B, 38, 290-295.

Zhao, Q. and Sun, J. (2006). Semiparametric and nonparametric estimation of recurrent event with observation gaps, Computational Statistics and Data Analysis, 51, 1924-1933. crossref(new window)