Advanced SearchSearch Tips
Analyzing Clustered and Interval-Censored Data based on the Semiparametric Frailty Model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Analyzing Clustered and Interval-Censored Data based on the Semiparametric Frailty Model
Kim, Jin-Heum; Kim, Youn-Nam;
  PDF(new window)
We propose a semi-parametric model to analyze clustered and interval-censored data; in addition, we plugged-in a gamma frailty to the model to measure the association of members within the same cluster. We propose an estimation procedure based on EM algorithm. Simulation results showed that our estimation procedure may result in unbiased estimates. The standard error is smaller than expected and provides conservative results to estimate the coverage rate; however, this trend gradually disappeared as the number of members in the same cluster increased. In addition, our proposed method was illustrated with data taken from diabetic retinopathy studies to evaluate the effectiveness of laser photocoagulation in delaying or preventing the onset of blindness in individuals with diabetic retinopathy.
Cox proportional hazards model;diabetic retinopathy studies;EM algorithm;frailty;interval censoring;
 Cited by
Frailty model approach for the clustered interval-censored data with informative censoring, Journal of the Korean Statistical Society, 2016, 45, 1, 156  crossref(new windwow)
Aalen, O. O., Borgan, O. and Gjessing, H. K. (2008). Survival and Event History Analysis, Springer, New York.

Ampe, B., Goethals, K., Laevens, H. and Duchateau, L. (2012). Investigating clustering in interval-censored udder quarter infection times in dairy cows using a gamma frailty model, Preventive Veterinary Medicine, in press.

Bellamy, S., Li, Y., Ryan, L. M., Lipsitz, S., Canner, M. and Wright, R. (2004). Analysis of clustered and interval censored data from a community-based study in asthma, Statistics in Medicine, 23, 3607-3621. crossref(new window)

Cai, J. and Prentice, R. L. (1995). Estimating equations for hazard ratio parameters based on correlated failure time data, Biometrics, 82, 151-164. crossref(new window)

Duchateau, L. and Janssen, P. (2008). The Frailty Model, Springer, New York.

Goethals, K., Ample, B., Berkvens, D., Laevens, H., Janssen, P. and Duchateau, L. (2009). Modelling intervalcensored, clustered cow udder quarter infection times through the shared gamma frailty model, Journal of Agricultural, Biological, and Environmental Statistics, 14, 1-14. crossref(new window)

Goggins, W. B. and Finkelstein, D. M. (2000). A proportional hazards model for multivariate interval-censored failure time data, Biometrics, 56, 940-943. crossref(new window)

Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data, Second Ed., John Wiley, New York.

Kim, M. Y. and Xu, X. (2002). The analysis of multivariate interval-censored survival data, Statistics in Medicine, 21, 3715-3726. crossref(new window)

Lam, K. F., Xu, Y. and Cheung, T.-L. (2010). A multiple imputation approach for clustered interval-censored survival data, Statistics in Medicine, 29, 680-693.

Lindsey, J. C. and Ryan, L. M. (1998). Tutorial in biostatistics: Methods for interval-censored data, Statistics in Medicine, 17, 219-238. crossref(new window)

Ross, E. A. and Moore, D. (1999). Modeling clustered, discrete, or grouped time survival data with covariates, Biometrics, 55, 813-819. crossref(new window)

Sun, J. (2006). The Statistical Analysis of Interval-censored Failure Time Data, Springer, New York.