JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Flexible Modeling Approach for Current Status Survival Data via Pseudo-Observations
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Flexible Modeling Approach for Current Status Survival Data via Pseudo-Observations
Han, Seungbong; Andrei, Adin-Cristian; Tsui, Kam-Wah;
  PDF(new window)
 Abstract
When modeling event times in biomedical studies, the outcome might be incompletely observed. In this paper, we assume that the outcome is recorded as current status failure time data. Despite well-developed literature the routine practical use of many current status data modeling methods remains infrequent due to the lack of specialized statistical software, the difficulty to assess model goodness-of-fit, as well as the possible loss of information caused by covariate grouping or discretization. We propose a model based on pseudo-observations that is convenient to implement and that allows for flexibility in the choice of the outcome. Parameter estimates are obtained based on generalized estimating equations. Examples from studies in bile duct hyperplasia and breast cancer in conjunction with simulated data illustrate the practical advantages of this model.
 Keywords
Breast cancer;current status data;generalized estimating equations;NPMLE;regression model;
 Language
English
 Cited by
 References
1.
Andersen, P. K., Hansen, M. G. and Klein, J. P. (2004). Regression analysis of restricted mean survival time based on pseudo-observations, Life Time Data Analysis, 10, 335-350. crossref(new window)

2.
Andersen, P. K., Klein J. P. and Rosthoj, S. (2003). Generalized linear models for correlated pseudoobservations with applications to multi-state models, Biometrika, 90, 15-27. crossref(new window)

3.
Andersen, P. K. and Perme, M. P. (2010). Pseudo-observations in survival analysis, Statistical Methods in Medical Research, 19, 71-99. crossref(new window)

4.
Andrei, A. C. and Murray, S. (2007). Regression models for the mean of quality-of-life-adjusted restricted survival time using pseudo-observations, Biometrics, 63, 398-404. crossref(new window)

5.
Chen, P. Y. and Tsiatis, A. A. (2001). Causal inference on the difference of the restricted mean lifetime between two groups, Biometrics, 57, 1030-1038. crossref(new window)

6.
Diamond, I. D., McDonald, J. W. and Shah, I. H. (1986). Proportional hazards models for current status data: Application to the study of differentials in age at weaning in Pakistan, Demography, 23, 607-620. crossref(new window)

7.
Dinse, G. E. and Lagakos, S. W. (1983). Regression analysis of Tumor prevalence data, Journal of the Royal Statistical Society, Series C (Applied Statistics), 32, 236-248.

8.
Ghosh, D. (2003). Goodness-of-fit methods for additive-risk models in tumorigenicity experiments, Biometrics, 55, 721-726.

9.
Graw, F., Gerds, T. A. and Schumacher, M. (2009). On pseudo-values for regression analysis in competing risks models, Lifetime Data Analysis, 15, 241-255. crossref(new window)

10.
Gruber, G., Cole, B. F., Castiglione-Gertsch, M., Holmberg, S. B., Lindtner, J., Golouh, R., Collins, J., Crivellari, D., Thurlimann, B., Simoncini, E., Fey, M. F., Gelber, R. D., Coates, A. S., Price, K. N., Goldhirsch, A., Viale, G. and Gusterson, B. A. (2008). Extracapsular tumor spread and the risk of local, axillary and supraclavicular recurrence in node-positive, premenopausal patients with breast cancer. Annals of Oncology, 19, 1393-1401. crossref(new window)

11.
Grummer-Strawn, L. M. (1993). Regression analysis of current-status data: An application to breast-feeding, Journal of the American Statistical Association, 88, 758-765. crossref(new window)

12.
Han, S., Andrei, A.-C. and Tsui, K.-W. (2012). A semiparametric regression method for interval-censored data, Communications in Statistics-Simulation and Computation, To be appeared.

13.
Hjort, N. L. and Claeskens, G. (2008). Model Selection and Model Averaging, Cambridge University Press, New York.

14.
Huang, J. (1995). Maximum likelihood estimation for proportional odds regression with current status data, Analysis of Censored Data, IMS Lecture Notes-Monograph Series, 27, 129-146.

15.
Huang, J. (1996). Efficient estimation for the proportional hazards model with interval censoring, The Annals of Statistics, 24, 540-568. crossref(new window)

16.
Huang, J. and Rossini, A. J. (1997). Sieve estimation for the proportional odds failure-time regression model with interval censoring, Journal of the American Statistical Association, 93, 960-967.

17.
International Breast Cancer Study Group (1996). Duration and reintroduction of adjuvant chemotherapy for node-positive premenopausal breast cancer patients, Journal of Clinical Oncology, 14, 1885-1894.

18.
Klein, J. P. and Andersen, P. K. (2005). Regression modeling for competing risks data based on pseudo-values of the cumulative incidence function, Biometrics, 61, 223-229. crossref(new window)

19.
Koul, H. L. and Yi, T. (2006). Goodness-of-fit testing in interval censoring case I, Statistics and Probability Letters, 76, 709-718. crossref(new window)

20.
Lin, D. Y., Oakes, D. and Ying, Z. (1998). Additive hazards regression with current status data, Biometrika, 85, 289-298. crossref(new window)

21.
Logan, B. R., Klein, J. P. and Zhang, M. J. (2008). Comparing treatments in the presence of crossing survival curves: An application to bone marrow transplantation, Biometrics, 64, 733-740. crossref(new window)

22.
Logan, B. R., Zhang, M. J. and Klein, J. P. (2011). Marginal models for clustered time-to-event data with competing risks using pseudovalues, Biometrics, 67, 1-7. crossref(new window)

23.
Martinussen, T. and Scheike, T. H. (2002). Efficient estimation in additive hazards regression with current status data, Biometrika, 89, 649-658. crossref(new window)

24.
Namata, H., Shkedy, Z., Faes, C., Aerts, M., Molenberghs, G., Theeten, H., Van Damme, P. and Beutels, P. (2007). Estimation of the force of infection from current status data using generalized linear mixed models, Journal of Applied Statistics, 34, 923-939. crossref(new window)

25.
Perme, M. P. and Anderson, P. K. (2008). Checking hazard regression models using pseudo-observations, Statistics in Medicine, 27, 5309-5328. crossref(new window)

26.
Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference, John Wiley, New York.

27.
Rossini, A. J. and Tsiatis, A. A. (1996). A semiparametric proportional odds regression model for the analysis of current status data, Journal of American Statistical Association, 91, 713-721. crossref(new window)

28.
Shen, X. (2000). Linear regression with current status data, Journal of the American Statistical Association, 95, 842-852. crossref(new window)

29.
Shiboski, S. C. (1998). Generalized additive models for current status data, Lifetime Data Analysis, 4, 29-50. crossref(new window)

30.
Sun, J. and Sun, L. (2005). Semiparametric linear transformation models for current status data, The Canadian Journal of Statistics, 33, 85-96. crossref(new window)

31.
Tian, L. and Cai, T. (2006). On the accelerated failure time model for current status and interval censored data, Biometrika, 93, 329-342. crossref(new window)

32.
Tong, X., Zhu, C. and Sun, J. (2007). Semiparametric regression analysis of two-sample current status data, with applications to tumorigenicity experiments, The Canadian Journal of Statistics, 35, 575-584. crossref(new window)

33.
Tukey, J. W. (1958). Bias and confidence in not quite large samples, Annals of Mathematical Statistics, 29, 614. crossref(new window)

34.
Vincent, J. C. (2011). gee: Generalized Estimation Equation solver. R package version 4.13-17 http://CRAN.R-project.org/package=gee

35.
Wang, W. and Ding, A. A. (2000). On assessing the association for bivariate current status data, Biometrika, 87, 879-893. crossref(new window)

36.
Yan, J. (2002). geepack: Yet Another Package for Generalized Estimating Equations, R-News, 12-14.

37.
Yan, J. and Fine, J. P. (2004). Estimating Equations for Association Structures, Statistics in Medicine, 23, 859-880. crossref(new window)