Advanced SearchSearch Tips
Hurdle Model for Longitudinal Zero-Inflated Count Data Analysis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Hurdle Model for Longitudinal Zero-Inflated Count Data Analysis
Jin, Iktae; Lee, Keunbaik;
  PDF(new window)
The Hurdle model can to analyze zero-inflated count data. This model is a mixed model of the logit model for a binary component and a truncated Poisson model of a truncated count component. We propose a new hurdle model with a general heterogeneous random effects covariance matrix to analyze longitudinal zero-inflated count data using modified Cholesky decomposition. This decomposition factors the random effects covariance matrix into generalized autoregressive parameters and innovation variance. The parameters are modeled using (generalized) linear models and estimated with a Bayesian method. We use these methods to carefully analyze a real dataset.
Random effects covariance matrix;generalized linear model;modified Cholesky decomposition;truncated Poisson model;
 Cited by
Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 125-134.

Celeux, G., Forbes, F., Robert, C. P. and Titterington, D. M. (2006). Deviance Information Criteria for Missing Data Models, Bayesian Analysis, 1, 651-674. crossref(new window)

Daniels, J. M. and Pourahmadi, M. (2002). Bayesian analysis of covariance matrices and dynamic models for longitudinal data, Biometrika, 89, 553-566. crossref(new window)

Daniels, J. M. and Zhao, Y. D. (2003). Modelling the random effects covariance matrix in longitudinal data, Statistics in Medicine, 22, 1631-1647. crossref(new window)

Daniels, M. J. and Hogan, J. W.(2008). Missing data in longitudinal studies: Strategies for Bayesian modeling and sensitivity analysis, Chapman & Hall/CRC.

Gelfand, A. E. and Ghosh, S. K. (1998). Model choice: A minimum posterior predictive loss approach, Biometrika, 85, 1-13. crossref(new window)

Heagerty, P. J. and Kurland, B. F. (2001). Misspecified maximum likelihood estimates and generalised linear mixed models, Biometrika, 88, 973-985. crossref(new window)

Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing, Technometrics, 34, 1-14. crossref(new window)

Lee, K., Joo, Y., Song, J. J. and Harper, D. W. (2011). Analysis of zero-inflated clustered count data: A marginalized model approach, Computational Statistics & Data Analysis, 55, 824-837. crossref(new window)

Lee, K. (2013). Bayesian modeling of random effects covariance matrix for generalized linear mixed models, Communications for Statistical Applications and Methods, 20, 235-240. crossref(new window)

Mullahy, J. (1986). Specification and testing of some modified count data models, Journal of Econometics, 33, 341-365. crossref(new window)

Min, Y. and Agresti, A. (2005). Random effect models for repeated measures of zero-inflated count data, Statistical Modelling, 5, 1-19. crossref(new window)

Neelon, B. H., O'Malley, A. J. and Normand, S. T. (2010). A Bayesian model for repeated measures zeroinflated count data with application to outpatient psychiatric service use, Statistical Modelling, 10, 421-439. crossref(new window)

Pan, J. X. and Mackenzie, G. (2003). Model selection for joint mean-covariance structures in longitudinal studies, Biometrika, 90, 239-244. crossref(new window)

Pan, J. X. and MacKenzie, G. (2006). Regression models for covariance structures in longitudinal studies, Statistical Modelling, 6, 43-57. crossref(new window)

Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation, Biometrika, 86, 677-690. crossref(new window)

Pourahmadi, M. (2000). Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix, Biometrika, 87, 425-435. crossref(new window)

Pourahmadi, M. and Daniels, M. J. (2002). Dynamic conditionally linear mixed models for longitudinal data, Biometrika, 58, 225-231.