JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Bayesian Spatiotemporal Modeling in Epidemiology: Hepatitis A Incidence Data in Korea
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Bayesian Spatiotemporal Modeling in Epidemiology: Hepatitis A Incidence Data in Korea
Choi, Jungsoon;
  PDF(new window)
 Abstract
Bayesian spatiotemporal analysis is of considerable interest to epidemiological applications because health data is collected over space-time with complicated dependency structures. A basic concept in spatiotemporal modeling is introduced in this paper to analyze space-time disease data. The paper reviews a range of Bayesian spatiotemporal models and analyzes Hepatitis A data in Korea.
 Keywords
Spatiotemporal Model;Bayesian inference;Hepatitis A;
 Language
Korean
 Cited by
 References
1.
Assuncao, R. M., Reis, I. A. and Oliveira, C. D. L. (2001). Diffusion and prediction of Leishmaniasis in a large metropolitan area in Brazil with a Bayesian space-time model, Statistics in Medicine, 20, 2319-2335. crossref(new window)

2.
Assuncao, R. M., Potter, J. E. and Cavenaghi, S. M. (2002). A Bayesian space varying parameter model applied to estimating fertility schedules, Statistics in Medicine, 21, 1097-0258.

3.
Bernardinelli, L., Clayton, D. G., Pascutto, C., Montomoli, C., Ghislandi, M. and Songini, M. (1995). Bayesian analysis of space.time variation in disease risk, Statistics in Medicine, 14, 2433-2444. crossref(new window)

4.
Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems(with discussions), Journal of the Royal Statistical Society, Series B, 36, 192-236.

5.
Cai, B., Lawson, A. B., Hossain, M. M. and Choi, J. (2012). Bayesian latent structure models with space-time dependent covariates, Statistical Modelling, 12, 145-164. crossref(new window)

6.
Carlin, B. P. and Banerjee, S. (2003). Hierarchical Multivariate CAR Models for Spatio-Temporally Correlated Survival Data(with discussion), In Bayesian Statistics 7, eds. J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West. Oxford University Press, Oxford.

7.
Choi, J., Lawson, A. B., Cai, B., Hossain, M. M., Kirby, R. S. and Liu, J. (2012). A Bayesian latent model with spatio-temporally varying coefficients in low birth weight incidence data, Statistical Methods in Medical Research, 21, 445-456. crossref(new window)

8.
Dreassi, E., Biggeri, A. and Catelan, D. (2005). Space-time models with time-dependent covariates for the analysis of the temporal lag between socioeconomic factors and lung cancer mortality, Statistics in Medicine, 24, 1919-1932. crossref(new window)

9.
Gamerman, D., Moreira, A. R. and Rue, H. (2003). Space-varying regression models: Specifications and simulation, Computational Statistics and Data Analysis, 42, 513-533. crossref(new window)

10.
Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models, Bayesian Analysis, 1, 515-533. crossref(new window)

11.
Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences, Statistical Science, 7, 457-472. crossref(new window)

12.
Jin, X., Carlin, B. P. and Banerjee, S. (2005). Generalized hierarchical multivariate CAR models for areal data, Biometrics, 61, 950-961. crossref(new window)

13.
Knorr-Held, L. (2000). Bayesian modelling of inseparable space-time variation in disease risk, Statistics in Medicine, 19, 2555-2567. crossref(new window)

14.
Knorr-Held, L. and Besag, J. (1998). Modelling risk from a disease in time and space, Statistics in Medicine, 17, 2045-2060. crossref(new window)

15.
Knorr-Held, L. and Best, N. G. (2001). A shared component model for detecting joint and selective clustering of two diseases, Journal of the Royal Statistical Society, Series A, 164, 73-85. crossref(new window)

16.
Lawson, A. B. (2013). Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, 2nd edition, CRC Press, New York.

17.
Martinez-Beneito, M. A., Lopez-Quilez, A. and Botella-Rocamora, P. (2008). An autoregressive approach to spatio-temporal disease mapping, Statistics in Medicine, 27, 2874-2889. crossref(new window)

18.
Mugglin, A. S., Cressie, N. and Gemmell, I. (2002). Hierarchical statistical modelling of influenza epidemic dynamics in space and time, Statistics in Medicine, 21, 2703-2721. crossref(new window)

19.
Richardson, S., Abellan, J. J. and Best, N. (2006). Bayesian spatio-temporal analysis of joint patterns of male and female lung cancer risks in Yorkshire (UK), Statistical Methods in Medical Research, 15, 385-407. crossref(new window)

20.
Sain, S. R. and Cressie, N. (2002). Multivariate lattice models for spatial environmental data, In ASA Proceedings of the Joint Statistical Meetings, 2820-2825, American Statistical Association, Alexandria, VA.

21.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van der Linde A. (2002). Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society, Series B, 64, 583-639. crossref(new window)

22.
Stern, H. S. and Cressie, N. A. C. (1999). Inference for extremes in disease mapping. In Lawson, A. B., Biggeri, A., Boehning, D., Lesaffre, E., Viel, J. F. and Bertolline, R. Disease Mapping and Risk Assessment for Public Health, Chapter 5, Wiley, New York.

23.
Tzala, E. and Best, N. (2008). Bayesian latent variable modelling of multivariate spatio-temporal variation in cancer mortality, Statistical Methods in Medical Research, 17, 97-118. crossref(new window)

24.
Waller, L. A., Carlin, B. P., Xia, H. and Gelfand, A. E. (1997). Hierarchical Spatio-temporal mapping of disease rates, Journal of the American Statistical Association, 92, 607-617. crossref(new window)

25.
Xia, H. and Carlin, B. P. (1998). Spatio-temporal models with errors in covariates: Mapping Ohio lung cancer mortality, Statistics in Medicine, 17, 2025-2043. crossref(new window)