JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Various Graphical Methods for Assessing a Logistic Regression Model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Various Graphical Methods for Assessing a Logistic Regression Model
Kim, Kyung Jin; Kahng, Myung Wook;
  PDF(new window)
 Abstract
Most statistical methods are dependent on the summary statistic. However, with graphical approaches, it is easier to identify the characteristics of the data and detect information that cannot be obtained by the summary statistic. We present various graphical methods to assess the adequacy of models in logistic regression that include checking log-density ratio, structural dimension, marginal model plot, chi-residual plot, and CERES plot. Through simulation data, we investigate and compare the results of graphical approaches under diverse conditions.
 Keywords
binary response plot;CERES plot;chi-residual plot;log-density ratio;marginal model plot;structural dimension;
 Language
Korean
 Cited by
 References
1.
Atkinson, A. C. (1985). Plots, Transformations and Regression, Oxford University Press, Oxford.

2.
Belsley, D. A., Kuh, E. and Welsch, R. E. (1980). Regression Diagnostics, Wiley, New York.

3.
Cleveland, W. S. and Devlin, D. J. (1988). Locally weighted regression: An approach to regression analysis by local fitting, Journal of the American Statistical Association, 83, 596-610. crossref(new window)

4.
Cook, R. D. (1993). Exploring partial residual plots, Technometrics, 35, 351-362. crossref(new window)

5.
Cook, R. D. (1998). Regression Graphics: Idea for Studying Regressions through Graphics, Wiley, New York.

6.
Cook, R. D. and Croos-Dabrera, R. (1998). Partial residual plots in generalized linear models, Journal of the American Statistical Association, 93, 730-739. crossref(new window)

7.
Cook, R. D. and Weisberg, S. (1982). Residuals and Inuence in Regression, Chapman & Hall, London.

8.
Cook, R. D. and Weisberg, S. (1994). An Introduction to Regression Graphics, Wiley, New York.

9.
Cook, R. D. and Weisberg, S. (1997). Graphics for assessing the adequacy of regression models, Journal of the American Statistical Association, 92, 490-499. crossref(new window)

10.
Cook, R. D. and Weisberg, S. (1999). Applied Regression Including Computing and Graphics, Wiley, New York.

11.
Ezekiel, M. (1924). A method of handling curvilinear correlation for any number of variables, Journal of the American Statistical Association, 19, 431-453. crossref(new window)

12.
Kay, R. and Little, S. (1987). Transformations of the explanatory variables in the logistic regression model for binary data, Biometrika, 74, 495-501. crossref(new window)

13.
Scrucca, L. (2003). Graphics for studying logistic regression models, Statistical Methods and Applications, 11, 371-394.

14.
Scrucca, L. and Weisberg, S. (2004). A simulation study to investigate the behavior of the log-density ratio under normality, Communication in Statistics Simulation and Computation, 33, 159-178. crossref(new window)

15.
Tierney, L. (1990). Lisp-Stat: An Object-Oriented Environment for Statistical Computing and Dynamic Graphics, Wiley, New York.