JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Study on the Comovement of Industry Default
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study on the Comovement of Industry Default
Jeon, Haehyun; Kim, So-Yeun; Kim, Changki;
  PDF(new window)
 Abstract
This paper studies the comovement of industry defaults among listed companies. Rank correlation coefficients of Spearman`s and Kendall`s measure the concordance of default. These non-parametric coefficients do not require distributional assumptions and are easily used even with less data and extreme values. This study predicts a future financial crisis by looking at the comovement of industry defaults. We expect our analyses will aid market participants (including company executives) in making investment or risk management decisions.
 Keywords
comovement;non-parametric statistics;multivariate correlation measure;concordance;industry default;
 Language
Korean
 Cited by
 References
1.
Adrain, M. C. and Charles, D. C. (2004). Default correlation: An empirical investigation of a subprime lender, Journal of Banking & Finance, 28, 753-771 crossref(new window)

2.
Choi, D. (2002). Asymmetric Corporate Financial Regulation and Korea's 1997 Currency Crisis, Working Paper, Korea Economic Research Institute, 15.

3.
Dolati, A. and Ubeda-Flores, M. (2006). On measures of multivariate concordance, Journal of Probability and Statistical Science, 4, 147-164.

4.
Engle, R. F. and Granger, C. W. J. (1987). Co-integration and error correction: Representation, estimation, and testing, Econometrica, 55, 251-276. crossref(new window)

5.
Joe, H. (1990). Multivariate concordance, Journal of Multivariate Analysis, 35, 12-30. crossref(new window)

6.
Joe, H. (1997). Multivariate Models and Dependence Concepts, Chapman & Hall, London.

7.
Johansen, S. and Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration-with applications to the demand for money, Oxford Bulletin of Economics and Statistics, 52, 169-210.

8.
Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models, Econometrica, 59, 1551-1580. crossref(new window)

9.
Kendall, M. G. (1990). Rank Correlation Methods, 4th ed., Oxford University Press, New York.

10.
Scarsini, M. (1984). On measures of concordance, Stochastica, 8, 201-218.

11.
Schmid, F. and Schmidt, R. (2007). Multivariate extensions of Spearman's rho and related statistics, Statistics & Probability Letters, 77, 407-416. crossref(new window)

12.
Song, J. (2005). Empirical investigation for the Won-Yen coupling since the Asian crisis, (Working paper), Korea Economic Research Institute, 26.

13.
Song, M., Park, C. and Lee, J. (2003). Nonparametric Statistics, Freedom Academy, Paju.

14.
Spearman, C. (1906). "Footrule" for measuring correlation, British Journal of Psychology, 2, 89-108.

15.
Statistics Korea (2007). Korea Standard Industry Classification.

16.
Taylor, M. D. (2007). Multivariate measures of concordance, Annals of the Institute of Statistical Mathe-matics, 59, 789-806. crossref(new window)

17.
Weichao, X., Yunhe, H., Hung, Y. S. and Yuexian, Z. (2010). Comparison of Spearman's rho and Kendall's tau in normal and contaminated normal models, Manuscript submitted to IEEE Transactions on In-formation Theory, http://arxiv.org/PS cache/arxiv/pdf/1011/1011.2009 v1.pdf

18.
Zhou, C. (2001). An analysis of default correlations and multiple defaults, Review of Financial Studies, 14, 555-576. crossref(new window)