JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Residual-based copula parameter estimation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Residual-based copula parameter estimation
Na, Okyoung; Kwon, Sunghoon;
  PDF(new window)
 Abstract
This paper considers we consider the estimation of copula parameters based on residuals in stochastic regression models. We prove that a semiparametric estimator using residual empirical distributions is consistent under some conditions and apply the results to the copula-ARMA model. We provide simulation results for illustration.
 Keywords
copula function;stochastic regression model;semiparametric estimation;residual empirical distribution;copula-ARMA model;AR approximation;
 Language
Korean
 Cited by
 References
1.
Brechmann, E. C. and Czado, C. (2015). COPAR-multivariate time series modeling using the copula autoregressive model, Applied Stochastic Models in Business and Industry, 31, 495-514. crossref(new window)

2.
Brockwell, P. J. and Davis, R. A. (2006). Time Series: Theory and Methods, Second edition, Springer.

3.
Chan, N. H., Chen, J., Chen, X., Fan, Y., and Peng, L. (2009). Statistical inference for multivariate residual copula of GARCH models, Statistica Sinica, 19, 53-70.

4.
Chen, X. and Fan, Y. (2006a). Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification, Journal of Econometrics, 135, 125-154. crossref(new window)

5.
Chen, X. and Fan, Y. (2006b). Estimation of copula-based semiparametric time series models, Journal of Econometrics, 130, 307-335. crossref(new window)

6.
Embrechts, P., McNeil, A., and Straumann, D. (2002). Correlation and dependence in risk management: properties and pitfalls, In Risk Management: Value at Risk and Beyond, ed. M.A.H. Dempster, Cambridge University Press, Cambridge, 176-223.

7.
Genest, C., Ghoudi, K., and Rivest, L. P. (1995). A semiparametric estimation procedure of dependence parameters in multivariate families of distributions,

8.
Jondeau, E. and Rockinger, M. (2006). The copula-GARCH model of conditional dependencies: An international stock market application, Journal of International Money and Finance, 25, 827-853.Biometrika, 82, 545-552. crossref(new window)

9.
Kim, G., Silvapulle, M. J., and Silvapulle, P. (2007). Comparison of semiparametric and parametric methods for estimation copulas, Computational Statistics and Data Analysis, 51, 2836-2850. crossref(new window)

10.
Lee, S. and Wei, C. Z. (1999). On residual empirical processes of stochastic regression models with applications to time series, The Annals of Statistics, 27, 237-261. crossref(new window)

11.
Li, Y., Xie, K., and Hu, B. (2013), Copula-ARMA model for multivariate wind speed and its applications in reliability assessment of generating systems, Journal of Electrical Engineering and Technology, 8, 421-427. crossref(new window)

12.
Patton, A. J. (2009). Copula-Based Models for Financial Time Series, In Handbook of Financial Time Series, ed. Andersen, T.G., Davis, R.A., Kreiss, J.P. and Mikosch, T., Springer, Berlin Heidelberg, 767-785.

13.
Scholzel, C. and Friederichs, P. (2008). Multivariate non-normally distributed random variables in climate research-introduction to the copula approach, Nonlinear Processes in Geophysics, 15, 761-772. crossref(new window)

14.
Sun, W., Rachev, S., Fabozzi, F. J., and Kalev, P. S. (2009). A new approach to modeling co-movement of international equity markets: evidence of unconditional copula-based simulation of tail dependence, Empirical Economics, 36, 201-229. crossref(new window)