JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Robust tests for heteroscedasticity using outlier detection methods
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Robust tests for heteroscedasticity using outlier detection methods
Seo, Han Son; Yoon, Min;
  PDF(new window)
 Abstract
There is a need to detect heteroscedasticity in a regression analysis; however, it invalidates the standard inference procedure. The diagnostics on heteroscedasticity may be distorted when both outliers and heteroscedasticity exist. Available heteroscedasticity detection methods in the presence of outliers usually use robust estimators or separating outliers from the data. Several approaches have been suggested to identify outliers in the heteroscedasticity problem. In this article conventional tests on heteroscedasticity are modified by using a sequential outlier detection methods to separate outliers from contaminated data. The performance of the proposed method is compared with original tests by a Monte Carlo study and examples.
 Keywords
heteroscedasticity;linear regression model;outliers;robust tests;
 Language
Korean
 Cited by
 References
1.
Anscombe, F. J. (1961). Examination of residuals, In Proceedings of 4th Berkeley Symposium, 1, 1-36.

2.
Atkinson, A. C. (1985). Plots, Transformations and Regression, Oxford University Press, Oxford.

3.
Bickel, P. (1978). Using residuals robustly I: tests for heteroscedasticity, nonlinearity, Annals of Statistics, 6, 266-291. crossref(new window)

4.
Breusch, T. and Pagan, A. (1979). A simple test for heteroscedasticity and random coefficient variation, Econometrica, 47, 1287-1294. crossref(new window)

5.
Carroll, R. J. and Ruppert, D. (1981). On robust tests for heteroscedasticity, Annals of Statistics, 9, 205-209.

6.
Carroll, R. J. and Ruppert, D. (1988). Transformation and Weighting in Regression, 2nd ed., Wiley, New York.

7.
Cheng, T.-C. (2012). On simultaneously identifying outliers and heteroscedasticity without specific form, Computational Statistics and Data Analysis, 56, 2258-2272. crossref(new window)

8.
Cook, R. D. and Weisberg, S. (1983). Diagnostics for heteroscedasticity in regression, Biometrika, 70, 1-10. crossref(new window)

9.
Draper, N. R. and Smith, H. (1998). Applied Regression Analysis, 3rd ed., John Wiley, New York.

10.
Gentleman, J. F. and Wilk, M. B. (1975). Detecting outliers II: supplementing the direct analysis of residuals, Biometrics, 31, 387-410. crossref(new window)

11.
Giloni, A., Simonoff, J. S., and Sengupta, B. (2006). Robust weighted LAD regression, Computational Statistics and Data Analysis, 50, 3124-3140. crossref(new window)

12.
Goldfeld, S. M. and Quandt, R. E. (1965). Some tests for homoscedasticity, Journal of the American Statistical Association, 60, 539-547. crossref(new window)

13.
Gujarati, D. (2002). Basic Econometrics, 4th ed., McGraw-Hill, New York.

14.
Hadi, A. S., and Simonoff, J. S. (1993). Procedures for the identification of multiple outliers in linear models, Journal of the American Statistical Association, 88, 1264-1272. crossref(new window)

15.
Hammerstrom, T. (1981). Asymptotically optimal tests for heteroscedasticity in the general linear model, Annals of Statistics, 9, 368-380. crossref(new window)

16.
Horn, P. (1981). Heteroscedasticity of residuals: a non-parametric alternative to the Goldfeld-Quandt peak test, Communications in Statistics-Theory and Methods, 10, 795-808. crossref(new window)

17.
Hubert, M. and Rousseeuw, P. J. (1997). Robust regression with both continuous and binary regressors, Journal of Statistical Planning and Inference, 57, 153-163. crossref(new window)

18.
Jajo, N. K. (2005). A review of robust regression an diagnostic procedures in linear regression, Acta Math- ematicae Applicatae Sinica, 21, 209-224.

19.
Kianifard, F. and Swallow, W. H. (1989). Using recursive residuals, calculated on adaptively-ordered observations, to identify outliers in linear regression, Biometrics, 45, 571-585. crossref(new window)

20.
Kianifard, F. and Swallow, W. H. (1990). A Monte Carlo comparison of five procedures for identifying outliers in linear regression, Communications in Statistics-Theory and Methods, 19, 1913-1938. crossref(new window)

21.
Koutsoyiannis, A. (2001). Theory of Econometrics, 2nd ed., Palgrave, New York.

22.
Marasinghe, M. G. (1985). A multistage procedure for detecting several outliers in linear regression, Technometrics, 27, 395-399. crossref(new window)

23.
Montgomery, D. C., Peck, E. A., and Vining, G. G. (2001). Introduction to Linear Regression Analysis, 3rd ed., Wiley, New York.

24.
Paul, S. R. and Fung, K. Y. (1991). A generalized extreme studentized residual multiple-outlier-detection procedure in linear regression, Technometrics, 33, 339-348. crossref(new window)

25.
Pindyck, S. R. and Rubinfeld, L. D. (1998). Econometric Models and Econometric Forecasts, 4th ed., Irwin/McGraw-Hill, New York.

26.
Rana, M. S., Midi, H., and Imon, A. H. M. R. (2008). A robust modification of the Goldfeld-Quandt test for the detection of heteroscedasticity in the presence of outliers, Journal of Mathematics and Statistics, 4, 277-283. crossref(new window)

27.
Ryan, T. P. (2008). Modern Regression Methods, 2nd ed., Wiley, New York.

28.
Weisberg, S. (2005). Applied Linear Regression, Wiley, New York.

29.
White, H. (1980). Heteroscedasticity-consistent covariance matrix estimator and a direct test for heteroscedasticity, Econometrica, 48, 817-838. crossref(new window)