JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A nonparametric Bayesian seemingly unrelated regression model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A nonparametric Bayesian seemingly unrelated regression model
Jo, Seongil; Seok, Inhae; Choi, Taeryon;
  PDF(new window)
 Abstract
In this paper, we consider a seemingly unrelated regression (SUR) model and propose a nonparametric Bayesian approach to SUR with a Dirichlet process mixture of normals for modeling an unknown error distribution. Posterior distributions are derived based on the proposed model, and the posterior inference is performed via Markov chain Monte Carlo methods based on the collapsed Gibbs sampler of a Dirichlet process mixture model. We present a simulation study to assess the performance of the model. We also apply the model to precipitation data over South Korea.
 Keywords
seemingly unrelated regression model;Dirichlet process mixture model;collapsed Gibbs sampling;precipitation prediction;
 Language
Korean
 Cited by
 References
1.
Aitken, A. C. (1935). On least-squares and linear combination of observations. In Proceedings of the Royal Society of Edinburgh, 55, 42-48.

2.
Aliprantis, C. D., Barnett, W. A., Cornet, B., and Durlauf, S. (2007). The interface between econometrics and economic theory, Journal of Econometrics, 136, 325-724. crossref(new window)

3.
Ando, T. and Zellner, A. (2010). Hierarchical Bayesian analysis of the seemingly unrelated regression and simultaneous equations models using a combination of direct Monte Carlo and importance sampling techniques, Bayesian Analysis, 5, 65-96. crossref(new window)

4.
Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems, The Annals of Statistics, 2, 1152-1174. crossref(new window)

5.
Baran, S. and Lerch, S. (2015). Log-normal distribution based Ensemble Model Output Statistics models for probabilistic wind-speed forecasting, Quarterly Journal of the Royal Meteorological Society, DOI:10.1002/qj.2521 crossref(new window)

6.
Chib, S. and Greenberg, E. (2010). Additive cubic spline regression with Dirichlet process mixture errors, Journal of Econometrics, 156, 322-336. crossref(new window)

7.
Deque, M. (2003). "Continuous Variable" Chapter 5, Forecast Verification: A Practitioner's Guide in Atmospheric Science, Wiley, New York.

8.
Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures, Journal of the American Statistical Association, 90, 577-588. crossref(new window)

9.
Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems, The Annals of Statistics, 1, 209-230. crossref(new window)

10.
Ferguson, T. S. (1983). Bayesian density estimation by mixtures of normal distributions. In M. Rizvi, J. Rustagi and D. Siegmund (Ed), Recent Advances in Statistics (pp. 287-302), Academic Press, New York.

11.
Fraser, D. A. S., Rekkasb, M., and Wong, A. (2005). Highly accurate likelihood analysis for the seemingly unrelated regression problem, Journal of Econometrics, 127, 17-33. crossref(new window)

12.
Geisser, S. and Eddy, W. F. (1979). A predictive approach to model selection, Journal of the American Statistical Association, 74, 153-160. crossref(new window)

13.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2014). Bayesian Data Analysis (3rd ed), Chapman & Hall/CRC, Florida.

14.
Glahn, H. R. and Lowry, D. A. (1972). The use of model output statistics (MOS) in objective weather forecasting, Journal of Applied Meteorology, 11, 1203-1211. crossref(new window)

15.
Greene, W. H. (2003). Econometric Analysis (5th ed), Prentice Hall, New Jersey.

16.
Hjort, N. L., Holmes, C., Muller, P., and Walker, S. G. (2010). Bayesian Nonparametrics, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press.

17.
Henningsen, A. and Hamann, J. D. (2007). systemfit: A package for estimating systems of simultaneous equations in R, Journal of Statistical Software, 23, 1-40.

18.
Jo, S., Lim, Y., Lee, J., Kang, H., and Oh, H. (2012). Bayesian regression model for seasonal forecast of precipitation over Korea, Asia-Pacific Journal of Atmospheric Sciences, 48, 205-212. crossref(new window)

19.
Kang, J., Suh, M., Hong, K., and Kim, C. (2011). Development of updateable Model Output Statistics (UMOS) System for Air Temperature over South Korea, Asia-Pacific Journal of Atmospheric Sciences, 47, 199-211. crossref(new window)

20.
Koop, G., Poirier, D. J., and Tobias, J. (2005). Semiparametric Bayesian inference in multiple equation models, Journal of Applied Econometrics, 20, 723-747. crossref(new window)

21.
Kowalski, J., Mendoza-Blanco, J. R., Tu, X. M., and Gleser, L. J. (1999). On the difference in inference and prediction between the joint and independent t-error models for seemingly unrelated regressions, Communications in Statistics - Theory and Methods, 28, 2119-2140. crossref(new window)

22.
Lang, S., Adebayo, S. B., Fahrmeir, L., and Steiner, W. J. (2003). Bayesian geoadditive seemingly unrelated regression, Computational Statistics, 18, 263-292.

23.
Lim, Y., Jo, S., Lee, J., Oh, H., and Kang, H. (2012). An improvement of seasonal climate prediction by regularized canonical correlation analysis, International Journal of Climatology, 32, 1503-1512. crossref(new window)

24.
Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates: I. Density estimates, The Annals of Statistics, 12, 351-357.

25.
Muller, P., Quintana, F. A., Jara, A., and Hanson, T. (2015). Bayesian Nonparametric Data Analysis, Springer Series in Statistics.

26.
Muller, P. and Rodriguez, A. (2013). Nonparametric Bayesian Inference, NSF-CBMS Regional Conference Series in Probability and Statistics, Volume 9, Institute of Mathematical Statistics.

27.
Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models, Journal of Computational and Graphical Statistics, 9, 249-265.

28.
Ng, V. M. (2002). Robust Bayesian inference for seemingly unrelated regressions with elliptical errors, Journal of Multivariate Analysis, 83, 409-414. crossref(new window)

29.
Park, H. and Hong, S.-Y. (2007). An evaluation of a mass-flux cumulus parameterization scheme in the kma global forecast system, Journal of the Meteorological Society of Japan, 85, 151-169. crossref(new window)

30.
Potts, J. M., Folland, C. K., Jolliffe, I. T., and Secton, D. (1996). Revised LEPS scores for assessing climate model simulations and long-range forecasts, Journal of Climate, 9, 34-54. crossref(new window)

31.
Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski, M. (2005). Using Bayesian model averaging to calibrate forecast ensembles, Monthly Weather Review, 133, 1155-1174. crossref(new window)

32.
Rodriguez, C. E. and Walker, S. G. (2014). Univariate Bayesian nonparametric mixture modeling with unimodal kernels, Statistics and Computing, 24, 35-49. crossref(new window)

33.
Sethurman, J. (1994). A constructive definition of Dirichlet priors, Statistica Sinica, 4, 639-650.

34.
Wang, H. (2010). Sparse seemingly unrelated regression modelling: applications in finance and econometrics, Computational Statistics and Data Analysis, 54, 2866-2877. crossref(new window)

35.
Zellner, A. (1962). An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias, Journal of the American Statistical Association, 57, 348-368. crossref(new window)

36.
Zellner, A. (1963). Estimators for seemingly unrelated regression equations: some exact finite sample results, Journal of the American Statistical Association, 58, 977-992. crossref(new window)

37.
Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics, Wiley, New York.

38.
Zellner, A. and Ando, T. (2010a). A direct Monte Carlo approach for Bayesian analysis for the seemingly unrelated regression model, Journal of Econometrics, 159, 33-45. crossref(new window)

39.
Zellner, A. and Ando, T. (2010b). Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting, International Journal of Forecasting, 26, 413-434. crossref(new window)

40.
Zellner, A. and Chen, B. (2002). Bayesian modeling of economies and data requirements, Macroeconomic Dynamics, 5, 673-700.

41.
Zellner, A. and Tobias, J. (2001). Further results on Bayesian method of moments analysis of the multiple regression model, International Economic Review, 42, 121-139. crossref(new window)