A nonparametric Bayesian seemingly unrelated regression model

- Journal title : Korean Journal of Applied Statistics
- Volume 29, Issue 4, 2016, pp.627-641
- Publisher : The Korean Statistical Society
- DOI : 10.5351/KJAS.2016.29.4.627

Title & Authors

A nonparametric Bayesian seemingly unrelated regression model

Jo, Seongil; Seok, Inhae; Choi, Taeryon;

Jo, Seongil; Seok, Inhae; Choi, Taeryon;

Abstract

In this paper, we consider a seemingly unrelated regression (SUR) model and propose a nonparametric Bayesian approach to SUR with a Dirichlet process mixture of normals for modeling an unknown error distribution. Posterior distributions are derived based on the proposed model, and the posterior inference is performed via Markov chain Monte Carlo methods based on the collapsed Gibbs sampler of a Dirichlet process mixture model. We present a simulation study to assess the performance of the model. We also apply the model to precipitation data over South Korea.

Keywords

seemingly unrelated regression model;Dirichlet process mixture model;collapsed Gibbs sampling;precipitation prediction;

Language

Korean

References

1.

Aitken, A. C. (1935). On least-squares and linear combination of observations. In Proceedings of the Royal Society of Edinburgh, 55, 42-48.

2.

Aliprantis, C. D., Barnett, W. A., Cornet, B., and Durlauf, S. (2007). The interface between econometrics and economic theory, Journal of Econometrics, 136, 325-724.

3.

Ando, T. and Zellner, A. (2010). Hierarchical Bayesian analysis of the seemingly unrelated regression and simultaneous equations models using a combination of direct Monte Carlo and importance sampling techniques, Bayesian Analysis, 5, 65-96.

4.

Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems, The Annals of Statistics, 2, 1152-1174.

5.

Baran, S. and Lerch, S. (2015). Log-normal distribution based Ensemble Model Output Statistics models for probabilistic wind-speed forecasting, Quarterly Journal of the Royal Meteorological Society, DOI:10.1002/qj.2521

6.

Chib, S. and Greenberg, E. (2010). Additive cubic spline regression with Dirichlet process mixture errors, Journal of Econometrics, 156, 322-336.

7.

Deque, M. (2003). "Continuous Variable" Chapter 5, Forecast Verification: A Practitioner's Guide in Atmospheric Science, Wiley, New York.

8.

Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures, Journal of the American Statistical Association, 90, 577-588.

9.

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems, The Annals of Statistics, 1, 209-230.

10.

Ferguson, T. S. (1983). Bayesian density estimation by mixtures of normal distributions. In M. Rizvi, J. Rustagi and D. Siegmund (Ed), Recent Advances in Statistics (pp. 287-302), Academic Press, New York.

11.

Fraser, D. A. S., Rekkasb, M., and Wong, A. (2005). Highly accurate likelihood analysis for the seemingly unrelated regression problem, Journal of Econometrics, 127, 17-33.

12.

Geisser, S. and Eddy, W. F. (1979). A predictive approach to model selection, Journal of the American Statistical Association, 74, 153-160.

13.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2014). Bayesian Data Analysis (3rd ed), Chapman & Hall/CRC, Florida.

14.

Glahn, H. R. and Lowry, D. A. (1972). The use of model output statistics (MOS) in objective weather forecasting, Journal of Applied Meteorology, 11, 1203-1211.

15.

Greene, W. H. (2003). Econometric Analysis (5th ed), Prentice Hall, New Jersey.

16.

Hjort, N. L., Holmes, C., Muller, P., and Walker, S. G. (2010). Bayesian Nonparametrics, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press.

17.

Henningsen, A. and Hamann, J. D. (2007). systemfit: A package for estimating systems of simultaneous equations in R, Journal of Statistical Software, 23, 1-40.

18.

Jo, S., Lim, Y., Lee, J., Kang, H., and Oh, H. (2012). Bayesian regression model for seasonal forecast of precipitation over Korea, Asia-Pacific Journal of Atmospheric Sciences, 48, 205-212.

19.

Kang, J., Suh, M., Hong, K., and Kim, C. (2011). Development of updateable Model Output Statistics (UMOS) System for Air Temperature over South Korea, Asia-Pacific Journal of Atmospheric Sciences, 47, 199-211.

20.

Koop, G., Poirier, D. J., and Tobias, J. (2005). Semiparametric Bayesian inference in multiple equation models, Journal of Applied Econometrics, 20, 723-747.

21.

Kowalski, J., Mendoza-Blanco, J. R., Tu, X. M., and Gleser, L. J. (1999). On the difference in inference and prediction between the joint and independent t-error models for seemingly unrelated regressions, Communications in Statistics - Theory and Methods, 28, 2119-2140.

22.

Lang, S., Adebayo, S. B., Fahrmeir, L., and Steiner, W. J. (2003). Bayesian geoadditive seemingly unrelated regression, Computational Statistics, 18, 263-292.

23.

Lim, Y., Jo, S., Lee, J., Oh, H., and Kang, H. (2012). An improvement of seasonal climate prediction by regularized canonical correlation analysis, International Journal of Climatology, 32, 1503-1512.

24.

Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates: I. Density estimates, The Annals of Statistics, 12, 351-357.

25.

Muller, P., Quintana, F. A., Jara, A., and Hanson, T. (2015). Bayesian Nonparametric Data Analysis, Springer Series in Statistics.

26.

Muller, P. and Rodriguez, A. (2013). Nonparametric Bayesian Inference, NSF-CBMS Regional Conference Series in Probability and Statistics, Volume 9, Institute of Mathematical Statistics.

27.

Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models, Journal of Computational and Graphical Statistics, 9, 249-265.

28.

Ng, V. M. (2002). Robust Bayesian inference for seemingly unrelated regressions with elliptical errors, Journal of Multivariate Analysis, 83, 409-414.

29.

Park, H. and Hong, S.-Y. (2007). An evaluation of a mass-flux cumulus parameterization scheme in the kma global forecast system, Journal of the Meteorological Society of Japan, 85, 151-169.

30.

Potts, J. M., Folland, C. K., Jolliffe, I. T., and Secton, D. (1996). Revised LEPS scores for assessing climate model simulations and long-range forecasts, Journal of Climate, 9, 34-54.

31.

Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski, M. (2005). Using Bayesian model averaging to calibrate forecast ensembles, Monthly Weather Review, 133, 1155-1174.

32.

Rodriguez, C. E. and Walker, S. G. (2014). Univariate Bayesian nonparametric mixture modeling with unimodal kernels, Statistics and Computing, 24, 35-49.

33.

Sethurman, J. (1994). A constructive definition of Dirichlet priors, Statistica Sinica, 4, 639-650.

34.

Wang, H. (2010). Sparse seemingly unrelated regression modelling: applications in finance and econometrics, Computational Statistics and Data Analysis, 54, 2866-2877.

35.

Zellner, A. (1962). An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias, Journal of the American Statistical Association, 57, 348-368.

36.

Zellner, A. (1963). Estimators for seemingly unrelated regression equations: some exact finite sample results, Journal of the American Statistical Association, 58, 977-992.

37.

Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics, Wiley, New York.

38.

Zellner, A. and Ando, T. (2010a). A direct Monte Carlo approach for Bayesian analysis for the seemingly unrelated regression model, Journal of Econometrics, 159, 33-45.

39.

Zellner, A. and Ando, T. (2010b). Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting, International Journal of Forecasting, 26, 413-434.

40.

Zellner, A. and Chen, B. (2002). Bayesian modeling of economies and data requirements, Macroeconomic Dynamics, 5, 673-700.