JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Comparison of Agrobacterium-mediated of Five Alfalfa (Medicago sativa L.) Cultivars Using the GUS Reporter Gene
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Comparison of Agrobacterium-mediated of Five Alfalfa (Medicago sativa L.) Cultivars Using the GUS Reporter Gene
Lee, Sang-Hoon; Kim, Ki-Yong; Park, Hyung Soo; Cha, Joon-Yung; Lee, Ki-Won;
  PDF(new window)
 Abstract
Alfalfa (Medicago sativa L.) is one of the most important forage legumes in the world. It has been demanded to establish the efficient transformation system in commercial varieties of alfalfa for forage molecular breeding and production of varieties possessing new characteristics. To approach this, genetic transformation techniques have been developed and modified. This work was performed to establish conditions for effective transformation of commercial alfalfa cultivars, Xinjiang Daye, ABT405, Vernal, Wintergreen and Alfagraze. GUS gene was used as a transgene and cotyledon and hypocotyl as a source of explants. Transformation efficiencies differed from 0 to 7.9% among alfalfa cultivars. Highest transformation efficiencies were observed in the cultivar Xinjiang Daye. The integration and expression of the transgenes in the transformed alfalfa plants was confirmed by polymerase chain reaction (PCR) and histochemical GUS assay. These data demonstrate highly efficient Agrobacterium transformation of diverse alfalfa cultivars Xinjiang Daye, which enables routine production of transgenic alfalfa plants.
 Keywords
Alfalfa;Agrobacterium;Molecular breeding;Transgenic plants;
 Language
English
 Cited by
 References
1.
Barik, D.P., Mohapatra, U. and Chand, P.K. 2005. Transgenic grasspea (Lathyrus sativus L.): Factors influencing Agrobacteriummediated transformation and regeneration. Plant Cell Reports. 24:523-531. crossref(new window)

2.
Bregitzer, P. 1992. Plant regeneration and callus type in barley: effect of genotype and culture medium. Crop Sci. 32(5):1108-1112. crossref(new window)

3.
Chabaud, M., Ratet, P., Araujo, S.S., Duque, A.S.R.L.A., Harrison, M. and Barker, D.G. 2007. Agrobacterium tumefaciens-mediated transformation and in vitro plant regeneration of M. truncatula. Medicago truncatula handbook.

4.
Chabaud, M., de Carvalho-Niebel, F. and Barker, D.G. 2003. Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1. Plant Cell Reports. 22:46-51. crossref(new window)

5.
Deak, M., Kiss, G., Koncz, C. and Dudits, D. 1986. Transformation of Medicago by Agrobacterium-mediated gene transfer. Plant Cell Reports. 5:97-100. crossref(new window)

6.
Ding, Y.L., Aldao-Humble, G., Ludlow, E., Drayton, M., Lin, Y.H., Nagel, J., Dupal, M., Zhao, G.Q., Pallaghy, C., Kalla, R., Emmerling, M. and Spangenberg, G. 2003. Efficient plant regeneration and Agrobacterium-mediated transformation in Medicago and Trifolium species. Plant Science. 165:1419-1427. crossref(new window)

7.
Hill, K.K., Jarvis-Eagan, N., Halk, E.L., Krahn, K.J., Liao, L.W., Mathewson, R.S., Merlo, D.J., Nelson, S.E., Rashka, K.E. and Loesch-Fries, L. 1991. The development of virus-resistant alfalfa, Medicago sativa L.. Nature Biotechnology. 9:373-378. crossref(new window)

8.
James, C. 2011. Global status of commercialized biotech/GM crops: brief 43, International Service for the Acquisition of Agribiotech Applications ISAAA. pp. 1-16.

9.
Jiang, Q., Zhang, J.Y., Guo, X., Monteros, M.J. and Wang, Z.Y. 2009. Physiological characterization of transgenic Alfalfa (Medicago sativa) plants for improved drought tolerance. Int. J. Plant Sci. 170:969-978. crossref(new window)

10.
Kechang, L., Ping, Z. and Cash, D. 2009. Biology and management of major alfalfa diseases and pests. In: Cash D, Yuegao H, Kechang L, Suqin W, Ping Z, Rong G (eds) Alfalfa management guide for ningxia. China Agricultural Press. China. pp. 37-62.

11.
Lee, K.W., Kim, K.Y., Lee, J.K., Park, H.S., Kim, K.H., Lee, B.H. and Lee, S.H. 2009. Factors influencing Agrobacterium-mediated transformation efficiency in perennial ryegrass. Journal of The Korean Society of Grassland and Forage Science. 29(3):165-170. crossref(new window)

12.
Lee, K.W., Choi, G.J., Kim, K.Y., Yoon, S.H., Ji, H.C., Park, H.S., Lim, Y.C. and Lee, S.H. 2010. Genotypic variation of Agrobacterium-mediated transformation of Italian ryegrass. Electronic Journal of Biotechnology. 13(3)1-10.

13.
Rosellini, D., Capomaccio, S., Ferradini, N., Sardaro, M.L., Alessandro, N. and Veronesi, F. 2007. Non-antibiotic, efficient selection for alfalfa genetic engineering. Plant Cell Reports. 26:1035-1044. crossref(new window)

14.
Vain, P. and Thole, V. 2009. Gene insertion patterns and sites. In: Jones HD, Shewry PR (eds) Methods in molecular biology, transgenic, wheat, barley and oats. vol 478, Humana Press. New York. pp. 203-226.

15.
Yan, L.P., Liu, C.L., Liang, H.M., Mao, X.H., Wang, F., Pang J.S., Shu, J. and Xia, Y. 2012. Physiological responses to salt stress of T2 alfalfa progenies carrying a transgene for betaine aldehyde dehydrogenase. Plant Cell Tissue Organ Culture. 108:191-199. crossref(new window)

16.
Zhang, H., Huang, Q. and SU, J. 2010. Development of Alfalfa (Medicago sativa L.) regeneration system and Agrobacteriummediated genetic transformation. Agricultural Sciences in China. 9(2):170-178. crossref(new window)

17.
Zhang, Y. and Liu, J. 2011. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants. J. Hazard Mat. 189:357-362. crossref(new window)

18.
Zhang, Y.M., Liu, Z.H., Wen, Z.Y., Zhang, H.M., Yang, F. and Guo, X.L. 2012. The vacuolar $Na^+-H^+$ antiport gene TaNHX2 confers salt tolerance on transgenic alfalfa (Medicago sativa). Funct Plant Biol. Published online 18 July 2012.