JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Isoparametric Curve of Quadratic F-Bézier Curve
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of the Chosun Natural Science
  • Volume 6, Issue 1,  2013, pp.46-52
  • Publisher : The Research Institute of Chosun Natural Science
  • DOI : 10.13160/ricns.2013.6.1.046
 Title & Authors
Isoparametric Curve of Quadratic F-Bézier Curve
Park, Hae Yeon; Ahn, Young Joon;
  PDF(new window)
 Abstract
In this thesis, we consider isoparametric curves of quadratic F-Bzier curves. F-Bzier curves unify C-Bzier curves whose basis is {sint, cos t, t, 1} and H-Bzier curves whose basis is {sinht, cosh t, t,1}. Thus F-Bzier curves are more useful in Geometric Modeling or CAGD(Computer Aided Geometric Design). We derive the relation between the quadratic F-Bzier curves and the quadratic rational Bzier curves. We also obtain the geometric properties of isoparametric curve of the quadratic F-Bzier curves at both end points and prove the continuity of the isoparametric curve.
 Keywords
F-Bzier Curve;Quadratic Rational Bzier Curve;Isoparametric Curve;Q-Bzier Curve;H-Bzier Curve;
 Language
English
 Cited by
 References
1.
H. Pottmann, "The geometry of Tchebycheffian spines", Comput. Aided Geom. D., Vol. 10, pp. 181-210, 1993. crossref(new window)

2.
J. Zhang, "C-curves: An extension of cubic curves", Comput. Aided Geom. D., Vol. 13, pp. 199-217, 1996. crossref(new window)

3.
J. Zhang, "Two different forms of C-B-splines", Comput. Aided Geom. D., Vol. 14, pp. 31-41, 1997, crossref(new window)

4.
J. W. Zhang, "C-Bezier curves and surfaces", Graph. Models Image Process, Vol. 61, pp. 2-15, 1999. crossref(new window)

5.
E. Mainar, J. Pena, and J. Sanchez-Reyes, "Shape preseving alternatives to the raional Bezier model", Comput. Aided Geom. D., Vol. 18, pp. 37-60, 2001.

6.
Q. Chen and G. Wang, "A class of Bezier-like curves", Comput. Aided Geom. D., Vol. 20, pp. 29-39, 2003. crossref(new window)

7.
Y. Lu, G. Wang, and X. Yang, "Uniform hyperbolic polynomial B-spline curves", Comput. Aided Geom. D., Vol. 19, pp. 379-393, 2002. crossref(new window)

8.
J. W. Zhang and F.-L. Krause, "Extend cubic uniform B-splines by unified trigonometric and hyberolic basis", Graph. Models, Vol. 67, pp. 100-119, 2005. crossref(new window)

9.
J. Zhang, F.-L. Krause, and H. Zhang, "Unifying C-curves and H-curves by extending the calculation to complex numbers", Comput. Aided Geom. D., Vol. 22, pp. 865-883, 2005. crossref(new window)

10.
G. Farin, "Curves and surfaces for Computer Aided Geometric Design: A particle code", fifth ed. Academic Press, London, 2001.

11.
M. Floater, "An $O(h^{2n})$ Hermite approximation for conic sections", Comput. Aided Geom. D., Vol. 14, pp. 135-151, 1997. crossref(new window)

12.
H. Y. Park, "Properties of isoparametric curve of quadratic F-Bezier curve", M.S. thesis, Chosun University, 2012.