JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Pharmacophore-Based Comparative Molecular Similarity Indices Analysis of CRTh2 Antagonists
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of the Chosun Natural Science
  • Volume 8, Issue 4,  2015, pp.273-284
  • Publisher : The Research Institute of Chosun Natural Science
  • DOI : 10.13160/ricns.2015.8.4.273
 Title & Authors
Pharmacophore-Based Comparative Molecular Similarity Indices Analysis of CRTh2 Antagonists
Babu, Sathya;
  PDF(new window)
 Abstract
Chemoattractant Receptor Homologous molecule expressed on Th2 cells (CRTh2) is a chemoattractant receptor with seven transmembrane helices targeted for inflammatory diseases such as asthma and allergic rhinitis. In this study, pharmacophore based Comparative Molecular Similarity Indices Analysis (CoMSIA) were performed on the series of 2-(2-(benzylthio)-1H-benzo[d]imidazol-1-yl) acetic acids derivatives. Initially, GASP module was used for generation of pharmacophore models using five highly active compounds from the dataset. Among the generated pharmacophores, the best pharmacophore model was selected based on fitness score and was used as template for the alignment of compounds which was used for CoMSIA analysis. The best predictions were obtained utilizing steric, hydrophobic and H-bond acceptor parameters showing a
 Keywords
CRTh2;Pharmacophore;CoMSIA;
 Language
English
 Cited by
 References
1.
J. Pothier, M. A. Riederer, O. Peter, X. Leroy, A. Valdenaire, C. Gnerre, and H. Fretz, "Novel 2-(2- (benzylthio)-1H-benzo[d]imidazol-1-yl) acetic acids: Discovery and hit-to-lead evolution of a selective CRTh2 receptor antagonist chemotype", Bioorg. Med. Chem. Lett., Vol. 22, pp. 4660-4664, 2012. crossref(new window)

2.
R. Pettipher and M. Whittaker, "Update on the development of antagonists of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). From lead optimization to clinical proof-of-concept in asthma and allergic rhinitis", J. Med. Chem., Vol. 55, pp. 2915-2931, 2012. crossref(new window)

3.
D. Bonafoux, A. Abibi, B. Bettencourt, A. Burchat, A. Ericsson, C. M. Harris, T. Kebede, M. Morytko, M. McPherson, G. Wallace, and X. Wu, "Thienopyrrole acetic acids as antagonists of the CRTH2 receptor", Bioorg. Med. Chem. Lett., Vol. 21, pp. 1861-1864, 2011. crossref(new window)

4.
T. Ulven and E. Kostenis, "Novel CRTH2 antagonists: A review of patents from 2006 to 2009", Expert Opin. Ther. Pat., Vol. 20, pp. 1505- 1530, 2010. crossref(new window)

5.
A. N. Hata, T. P. Lybrand, and R. M. Breyer, "Identification of determinants of ligand binding affinity and selectivity in the prostaglandin D2 receptor CRTH2", J. Biol. Chem., Vol. 280, pp. 32442- 32451, 2005. crossref(new window)

6.
T. N. Birkinshaw S. J. Teague, C. Beech, R. V. Bonnert, S. Hill, A. Patel, S. Reakes, H. Sanganee, I. G. Dougall, T. T. Phillips, S. Salter, J. Schmidt, E. C. Arrowsmith, J. J. Carrillo, F. M. Bell, S. W. Paine, and R. Weaver, "Discovery of potent CRTh2 (DP2) receptor antagonists", Bioorg. Med. Chem. Lett., Vol. 16, pp. 4287-4290, 2006. crossref(new window)

7.
R. Pettipher, "The roles of the prostaglandin D2 receptors DP1 and CRTH2 in promoting allergic responses", Brit. J. Pharmacol., Vol. 153, pp. S191- S199, 2008.

8.
S. Crosignani, P. Page, M. Missotten, V. Colovray, C. Cleva, J.-F. Arrighi, J. Atherall, J. Macritchie, T. Martin, Y. Humbert, M. Gaudet, D. Pupowicz, M. Maio, P.-A. Pittet, L. Golzio, C. Giachetti, C. Rocha, G. Bernardinelli, Y. Filinchuk, A. Scheer, M. K. Schwarz, and A. Chollet, "Discovery of a new class of potent, selective, and orally bioavailable CRTH2 (DP2) receptor antagonists for the treatment of allergic inflammatory diseases", J. Med. Chem., Vol. 51, pp. 2227-2243, 2008. crossref(new window)

9.
A. K. Jain, N. Manocha, V. Ravichandran, V. K. Mourya, and R. K. Agrawal, "Three-dimensional Qsar study of 2,4-disubstituted-phenoxy acetic acid derivatives as a Crth2 receptor antagonist: using the K-nearest neighbor method", Dig. J. Nanomater. Bios., Vol. 3, pp. 147-158, 2008.

10.
G. Jones, P. Willett, and R. C. Glen, "A genetic algorithm for flexible molecular overlay and pharmacophore elucidation", J. Comput. Aid. Mol. Des., Vol. 9, pp. 532-549, 1995. crossref(new window)

11.
SYBYL Software, Version X2.0., 2006, Tripos Associates Inc, St. Louis, USA.

12.
G. Klebe, U. Abraham, and T. Mietzner, "Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity", J. Med. Chem., Vol. 37, pp. 4130-4146, 1994. crossref(new window)

13.
S. Wold, A. Ruhe, H. Wold, and W. J. Dunn, "The collinearity problem in linear regression. the partial least squares (PLS) approach to generalized inverses", SIAM Journal on Scientific and Statistical Computing, Vol. 5, pp. 735-743, 1984. crossref(new window)

14.
S. Wold, "Cross-validatory estimation of the number of components in factor and principal component model", Technometrics, Vol.20, pp. 397- 405, 1978. crossref(new window)

15.
B. Sathya and T. Madhavan, "Comparative molecular field analysis of caspase-3 inhibitors", J. Choun Natural Sci., Vol. 7, pp. 166-172, 2014. crossref(new window)

16.
P. Singh and T. Madhavan, "Histone deactylase inhibitors as novel target for cancer, diabetes, and inflammation", J. Chosun Natural Sci., Vol. 6, pp. 57-63, 2013. crossref(new window)

17.
S. Kulkarni and T. Madhavan, "Application of docking methods: An effective in silico tool for drug design", J. Chosun Natural Sci., Vol. 6, pp. 100-103, 2013. crossref(new window)

18.
M. Shalini and T. Madhavan, "Homology modeling of CCR 4: novel therapeutic target and preferential maker for Th2 Cells", J. Chosun Natural Sci., Vol. 7, pp. 234-240, 2014. crossref(new window)

19.
B. Sathya and T. Madhavan, "Comparative molecular similarity indices analysis of caspase-3 inhibitors", J. Chosun Natural Sci., Vol. 7, pp. 227- 233, 2014. crossref(new window)