Comparison of Offset Approximation Methods of Conics with Explicit Error Bounds

- Journal title : Journal of the Chosun Natural Science
- Volume 9, Issue 1, 2016, pp.10-15
- Publisher : The Research Institute of Chosun Natural Science
- DOI : 10.13160/ricns.2016.9.1.10

Title & Authors

Comparison of Offset Approximation Methods of Conics with Explicit Error Bounds

Bae, Sung Chul; Ahn, Young Joon;

Bae, Sung Chul; Ahn, Young Joon;

Abstract

In this paper the approximation methods of offset curve of conic with explicit error bound are considered. The quadratic approximation of conic(QAC) method, the method based on quadratic circle approximation(BQC) and the Pythagorean hodograph cubic(PHC) approximation have the explicit error bound for approximation of offset curve of conic. We present the explicit upper bound of the Hausdorff distance between the offset curve of conic and its PHC approximation. Also we show that the PHC approximation of any symmetric conic is closer to the line passing through both endpoints of the conic than the QAC.

Keywords

Conic;Offset Approximation;Explicit Error Bound;Convolution Curve;Pythagorean Hodograph;

Language

English

References

1.

W. Bohm, G. Farin, and J. Kahmann, "A survey of curve and surface methods in CAGD", Comput. Aided Geom. D., Vol. 1, pp 1-60, 1984.

2.

E. T. Lee, "The rational Bezier representation for conics", In G. E. Farin, eds., Geometric Modeling: Algorithms and New Trends. SIAM, pp. 3-19, 1987.

3.

W. H. Frey and D. A. Field, "Designing Bezier conic segments with monotone curvature", Comput. Aided Geom. D., Vol. 17, pp 457-483, 2000.

4.

Y. J. Ahn and H. O. Kim, "Curvatures of the quadratic rational Bezier curves", Comput. Math. Appl., Vol., 36, pp 71-83, 1998.

5.

G.-J. Wang and G.-Z. Wang, "The rational cubic Bezier representation of conics", Comput. Aided Geom. D., Vol. 9, pp 447-455, 1992.

6.

L. Fang, "A rational quartic Bezier representation for conics", Comput. Aided Geom. D., Vol 19, pp 297-312, 2002.

7.

J. Sanchez-Reyes, "Geometric recipes for constructing Bezier conics of given centre or focus", Comp. Aided Geom. Desi., Vol. 21, pp 111-116, 2004.

8.

C. Xu, T.-W. Kim and G. Farin, "The eccentricity of conic sections formulated as rational Bezier quadratics", Comput. Aided Geom. D., Vol. 27, 458-460, 2010.

9.

A. Cantona, L. Fernandez-Jambrina and E. R. Maria, "Geometric characteristics of conics in Bezier form", Comput. Aided Design, Vol. 43, 1413-1421, 2011.

10.

J. Sanchez-Reyes, "Simple determination via complex arithmetic of geometric characteristics of Bezier conics", Comput. Aided Geom. D., Vol. 28, pp 345-348, 2011.

11.

M. Floater, "High-order approximation of conic sections by quadratic splines", Comput. Aided Geom. D., Vol. 12, pp 617-637, 1995.

12.

M. S. Floater, "An O($h^{2n}$ ) Hermite approximation for conic sections", Comput. Aided Geom. D., Vol. 14, pp 135-151, 1997.

13.

L. Fang, "$G^3$ approximation of conic sections by quintic polynomial curves", Comput. Aided Geom. D., Vol. 16, pp 755-766, 1999.

14.

Y. J. Ahn, "Approximation of conic sections by curvature continuous quartic Bezier curves", Comput. Math. Appl., Vol. 60, pp 1986-1993, 2010.

15.

16.

G. Salmon, "A treatise on conic sections", New York: Chelsea, 1954.

17.

W. Lu, "Offset-rational parametric plane curves", Comput. Aided Geom. D., Vol. 12, pp 601-616, 1995.

18.

G. Farin, "Curvature continuity and offsets for piecewise conics", ACM T. Graphic., Vol. 8, pp. 89-99, 1989.

19.

R. Lee and Y. J. Ahn, "Construction of logarithmic spiral-like curve using $G^2$ quadratics spline with self similarity", J. Chosun Natural Sci., Vol. 7, pp 124-129, 2014.

20.

Y. J. Ahn, C. M. Hoffmann, and Y. S. Kim, "Curvature-continuous offset approximation based on circle approximation using quadratic Bezier biarcs", Comput. Aided Design, Vol. 43, pp. 1011-1017, 2011.

21.

I.-K. Lee, M.-S. Kim, and G. Elber, "Planar curve offset based on circle approximation", Comput. Aided Design, Vol. 28, pp 617-630, 1996.

22.

S. W. Kim, S. C. Bae, and Y. J. Ahn, "An algorithm for $G^2$ offset approximation based on circle approximation by $G^2$ quadratic spline", Comput. Aided Design, Vol. 73, pp 36-40, 2016.

23.

R. T. Farouki and T. Sakkalis, "Pythagorean hodographs", IBM J. Res. Dev., Vol. 34, pp 736-752, 1990.

24.

R. T. Farouki, "Pythagorean-hodograph Curves", Berlin: Springer, pp. 381-391, 2008.