Advanced SearchSearch Tips
3D QSAR Studies of Mps1 (TTK) Kinase Inhibitors Based on CoMFA
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of the Chosun Natural Science
  • Volume 9, Issue 2,  2016, pp.113-120
  • Publisher : The Research Institute of Chosun Natural Science
  • DOI : 10.13160/ricns.2016.9.2.113
 Title & Authors
3D QSAR Studies of Mps1 (TTK) Kinase Inhibitors Based on CoMFA
Balasubramanian, Pavithra K.; Balupuri, Anand; Cho, Seung Joo;
  PDF(new window)
Monopolar spindle 1 (Mps1) is an attractive cancer target due to its high expression levels in a wide range of cancer cells. Mps1 is a dual specificity kinase. It plays an essential role in mitosis. The high expression od Mps1 was observed in various grades of breast cancers. In the current study, we have developed a CoMFA model of pyridazine derivatives as Mps1 kinase inhibitors. The developed CoMFA model ($q^2
CoMFA;Monopolar Spindle Kinase (Mps1);TTK Kinase;Pyridazine Derivatives;Kinase Inhibitors;
 Cited by
X. Liu and M. Winey, "The MPS1 family of protein kinases", Annu. Rev. Biochem., Vol. 81, pp. 561-585, 2012. crossref(new window)

M. Winey, L. Goetsch, P. Baum, and B. Byers, "MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication", The Journal of Cell Biology, Vol.114, pp. 745-754, 1991. crossref(new window)

A. M. Wengner, G. Siemeister, M. Koppitz, V. Schulze, D. Kosemund, U. Klar, D. Stoeckigt, R. Neuhaus, P. Lienau, B. Bader, S. Prechtl, M. Raschke, A.-L. Frisk, O. von Ahsen, M. Michels, B. Kreft, F. von Nussbaum, M. Brands, D. Mumberg, and K. Ziegelbauer, "Novel Mps1 kinase inhibitors with potent antitumor activity", Mol. Cancer Ther., Vol. 15, pp. 583-592, 2016. crossref(new window)

A. R. Schutz and M. Winey, "New alleles of the yeast MPS1 gene reveal multiple requirements in spindle pole body duplication", Mol. Biol. Cell, Vol. 9, pp. 759-774, 1998. crossref(new window)

A. Abrieu, L. Magnaghi-Jaulin, J. A. Kahana, M. Peter, A. Castro, S. Vigneron, T. Lorca, D. W. Cleveland, and J.-C. Labbe, "Mps1 is a kinetochore-associated kinase essential for the vertebrate mitoticCheckpoint", Cell, Vol. 106, pp. 83-93, 2001. crossref(new window)

V. M. Stucke, H. H. W. Sillje, L. Arnaud, and E. A. Nigg, "Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication", EMBO J., Vol. 21, pp. 1723-1732, 2002. crossref(new window)

H. A. Fisk, C. P Mattison, and M. Winey, "Human Mps1 protein kinase is required for centrosome duplication and normal mitotic progression", P. Natl. Acad. Sci, U.S.A., Vol. 100, pp. 14875-14880, 2003. crossref(new window)

K. Nihira, N. Taira, Y. Miki, and K. Yoshida, "TTK/Mps1 controls nuclear targeting of c-Abl by 14-3-3-coupled phosphorylation in response to oxidative stress", Oncogene, Vol. 27, pp. 7285-7295, 2008. crossref(new window)

J. Daniel, J. Coulter, J. H. Woo, K. Wilsbach, and E. Gabrielson, "High levels of the Mps1 checkpoint protein are protective of aneuploidy in breast cancer cells", P. Natl. Acad. Sci. U.S.A., Vol. 108, 5384-5389, 2011. crossref(new window)

M. T. Landi, T. Dracheva, M. Rotunno, J. D. Figueroa, H. Liu, A. Dasgupta, F. E. Mann, J. Fukuoka, M. Hames, A. W. Bergen, S. E. Murphy, P. Yang, A. C. Pesatori, D. Consonni, P. A. Bertazzi, S. Wacholder, J. H. Shih, N. E. Caporaso, and J. Jen, "Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival", Plos One, Vol. 3, pp. e1651, 2008. crossref(new window)

G. Salvatore, T. C. Nappi, P. Salerno, Y. Jiang, C. Garbi, C. Ugolini, P. Miccoli, F. Basolo, M. D. Castellone, A. M. Cirafici, R. M. Melillo, A. Fusco, M. L. Bittner, and M. Santoro, "A cell proliferation and chromosomal instability signature in anaplastic thyroid Carcinoma", Cancer Res., Vol. 67, pp. 10148-10158, 2007. crossref(new window)

B. Yuan, Y. Xu, J.-H. Woo, Y. Wang, Y. K. Bae, D.-S. Yoon, R. P. Wersto, E. Tully, K. Wilsbach, and E. Gabrielson, "Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability", Clin. Cancer Res., Vol. 12, pp. 405-410, 2006. crossref(new window)

E Manchado, M Guillamot, and M. Malumbres, "Killing cells by targeting mitosis", Cell Death Differ., Vol. 19, pp. 369-377, 2012. crossref(new window)

K.-I. Kusakabe et al., "Discovery of imidazo[1,2-b]pyridazine derivatives: selective and orally available Mps1 (TTK) kinase inhibitors exhibiting remarkable antiproliferative activity", J. Med. Chem., Vol. 58, 1760-1775, 2015. crossref(new window)

P. K. Balasubramanian, A. Balupuri, and S. J. Cho, "A CoMFA study of phenoxypyridine-based JNK3 inhibitors using various partial charge schemes", J. Chosun Natural Sci., Vol. 7, pp. 45-49, 2014. crossref(new window)

P. K. Balasubramanian and S. J. Cho, "HQSAR analysis on novel series of 1-(4-phenylpiperazin-1-yl-2-(1H-pyrazol-1-yl) ethanone derivatives targeting CCR1", J. Chosun Natural Sci., Vol. 6, pp. 163-169, 2013. crossref(new window)

A. Balupuri and S. J.Cho, "Exploration of the binding mode of indole derivatives as potent HIV-1 inhibitors using molecular docking simulations", J. Chosun Natural Sci., Vol. 6, pp. 138-142, 2013. crossref(new window)

P. K. Balasubramanian, A. Balupuri, and S. J. Cho, "3D QSAR study on pyrrolopyrimidines-based derivatives as LIM2 kinase inhibitors", J. Chosun Natural Sci., Vol. 8, pp. 285-292, 2015. crossref(new window)

S. J. Cho, "The importance of halogen bonding: A tutorial", J. Chosun Natural Sci., Vol. 5, pp. 195-197, 2012. crossref(new window)

SYBYLx2.1, Tripos International, 1699 South Hanley Road, St. Louis, Missouri, 63144, USA.

R. D. Cramer, D. E. Patterson, and J. D. Bunce, "Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins", J. Am. Chem. Soc., Vol. 110, pp. 5959-5967,1988. crossref(new window)