JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Determination of Algerian Weighted Mean Temperature Model for forthcoming GNSS Meteorology Application in Algeria
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Determination of Algerian Weighted Mean Temperature Model for forthcoming GNSS Meteorology Application in Algeria
Song, Dong-Seob; Boutiouta, Seddik;
 
 Abstract
Since the accuracy of precipitable/integrated water vapor estimates from GNSS measurements is proportional to the accuracy of water vapor Weighted Mean Temperature Model (WMTM), the WMTM is a significant formulation in the retrieval of precipitable water vapor from zenith wet delay of GNSS signal. The purpose of this paper is to develop available the WMTM to apply for GNSS meteorology in the region of Algeria, by using the Algerian radiosonde network in the World Meteorological Organization (WMO). It can be concluded that the available GNSS precipitable water vapor which is retrieved by the developed Algerian Weighted Mean Temperature Equation (AWMTE) can be useful technique for sensing of water vapor in the Algeria, after Algerian Continuously Operating Reference System (CORS) will be constructed.
 Keywords
GNSS meteorology;Weighted mean temperature equation;Regression analysis;
 Language
English
 Cited by
1.
Seasonal Multifactor Modelling of Weighted-Mean Temperature for Ground-Based GNSS Meteorology in Hunan, China, Advances in Meteorology, 2017, 2017, 1687-9317, 1  crossref(new windwow)
 References
1.
Anzidei, M., G. Casula, A. Galvani, A. Pesci, E. Serpelloni, P. Baldi, S. Touam, and S. Kahlouche (2003), Data analysis of the first epoch GPS Algerian regional network, Boll. Geo. Sci. Affini, Vol. 62, No. 3, pp. 179-192.

2.
Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware (1992), GPS Meteorology : Remote sensing of atmospheric water vapor using the Global Positioning System, J. Geophys. Res., Vol. 97, No. 15, pp. 787-801.

3.
Bevis, M., ST. Businger, ST. Chriswell (1994), GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water, Journal of Applied Meteorology, Vol. 33, pp. 379-386. crossref(new window)

4.
Boutiouta, S., and A. H. Belbachir (2006), Magnetic Storms Effects on the Ionosphere TEC through GPS data, Information Technology Journal, Vol, 5, No. 5, pp. 908-915. crossref(new window)

5.
Cao, Y., F. Zheng, Y. Xie, and Y. Bi (2008), Impact of the Weighted Mean Temperature on the Estimation of GPS Precipitable Water Vapor, Microwave and Millimeter Wave Technology, International ICMMT2008 Proceedings, 2, pp. 799-801.

6.
Daho, S. A. B., and J. D. Fairhead (2007), Accuracy assessment of the available geoid models in Algeria, Computers and Geosciences, Vol. 33, pp. 76-82. crossref(new window)

7.
Davis, J. L., T. A. Herring, I. I. Sharpiro, A. E. E. rogers, and G. elgered (1985), Geodesy by Radio Interferometry: Effects of Atmospheric Modeling Errors on Estimates of Baseline Length, Radio Science, Vol. 20, No 6, pp. 1593-1607. crossref(new window)

8.
Dekkiche, H., S. Kahlouche, C. B. Kadri, and R. Mir (2008), Ionospheric Modelling in the North of Algeria, International Association of Geodesy Symposia, Vol. 133, pp. 679-689. crossref(new window)

9.
Frank, P. (1953), Rejection of Outlying Observations, American Journal of Physics, Vol. 21, No. 7, pp. 520-525. crossref(new window)

10.
Feng, Y., Z. Bai, P. Fang, and A. Williams (2001), GPS Water Vapour Experimental Results From Observations of the Australian Regional GPS Network (ARGN), A Spatial Odyssey : 42nd Australian Surveyors Congress.

11.
Liou, Y. A., Y. T. Teng (2001), Comparison of Precipitable Water Observations in the Near Tropics by GPS, Microwave Radiometer, and Radiosondes, Journal of Applied Meteorology, Vol. 40, pp. 5-15. crossref(new window)

12.
Logan, W. R. (1955), The Reject ion of Outlying Observations, Survey Review, Vol. 13, No. 97, pp. 133-137. crossref(new window)

13.
Mendes, V.B. (1999), Modeling the Neutral-atmosphere Propagation Delay in Radiometric Space Techniques, Ph.D. dissertation, Technical Report No. 199, University of New Brunswick, Fredericton, New Brunswick, Canada.

14.
Mockler, S. B. (1995), Water vapor in the climate system, special report, AGU, Washington, D. C., Dec.

15.
Raju, C. S., K. Saha, B. V. Thampi, and K. Parameswaran (2007), Empirical model for mean temperature for Indian zone and estimation of precipitable water vapor from ground based GPS measurements, Ann. Geophys., Vol. 25, pp. 1935-1948. crossref(new window)

16.
Ross, R. J., and S. Rosenfeld (1997), Estimating mean weighted temperature of the atmosphere for Global Positioning System applications, J. Geophys. Res., Vol. 102, No. D18, pp. 21,719-21,730. crossref(new window)

17.
Ross, R. J., and W. P. Elliott (1996), Tropospheric precipitable water: A radiosonde-based climatology, NOAA Tech. Memo. ERL ARL-219, 132 pp., Natl. Oceanic and Atmos. Admin., Silver Spring, Md.

18.
Schuler, T. (2001), On Ground-Based GPS Tropospheric Delay Estimation, Doctor's Thesis, Studiengang Geodsie und Geoinformation, Universitt der Bundeswehr Munchen (University FAF Munich), Germany.

19.
Smith, E. K. and S. Weintraub (1953), The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies, Proceedings of IEEE, Vol. 41, pp. 1035-1037.

20.
Solbrig, P. (2000), Untersuchungen ber die Nutzung numerischer Wettermodelle zur Wasserdampfbestimmung mit Hilfe des Global Positioning Systems, Diploma Thesis, Institute of Geodesy and Navigation, University FAF Munich, (In German).

21.
Song, D.S. and D. A. Grejner-Brzezinska (2009), Remote sensing of atmospheric water vapor variation from GPS measurements during a severe weather event, Earth, Planets and Space, Vol. 61, No. 10, pp. 1117-1125. crossref(new window)

22.
Thayer, D. (1974), An Improved Equation for the Radio Refractive Index of Air, Radio Science, Vol. 9, pp. 803-807. crossref(new window)

23.
UNECA (United Nations Economic Commission for Africa) (2008), African Geodetic Reference Frame (AFREF), Newsletter, May.

24.
Wang, J., L. Zhang, and A. Dai (2005), Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications, J. Geophys. Res., Vol. 110, No. D21101, doi:10.1029/20005JD006215. crossref(new window)

25.
Yelles, K., K. Lammali, A. Mahsas, E. Calais, P. Briole (2004), Coseismic deformation of the May 21st, 2003, Mw= 6.8 Boumerdes earthquake, Algeria, from GPS measurements, Geophys. Res. Lett., Vol. 31, pp. 1-4.

26.
Yuan, L. L., R. A. Anthes, R. H. Ware, C. Rocken, W. D. Bonner, M. G. Bevis, and S. Businger (1993), Sensing Climate Change Using the Global Positioning System, J. Geophys. Res., Vol. 98, No. D8, pp. 14,925-14,937. crossref(new window)