JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Geoid Determination in South Korea from a Combination of Terrestrial and Airborne Gravity Anomaly Data
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Geoid Determination in South Korea from a Combination of Terrestrial and Airborne Gravity Anomaly Data
Jekeli, Christopher; Yang, Hyo Jin; Kwon, Jay Hyoun;
 
 Abstract
The determination of the geoid in South Korea is a national imperative for the modernization of height datums, specifically the orthometric height and the dynamic height, that are used to monitor hydrological systems and environments with accuracy and easy revision, if necessary. The geometric heights above a reference ellipsoid, routinely obtained by GPS, lead immediately to vertical control with respect to the geoid for hydrological purposes if the geoid height above the ellipsoid is known accurately. The geoid height is determined from gravimetric data, traditionally ground data, but in recent times also from airborne data. This paper illustrates the basic concepts for combining these two types of data and gives a preliminary performance assessment of either set or their combination for the determination of the geoid in South Korea. It is shown that the most critical aspect of the combination is the gravitational effect of the topographic masses above the geoid, which, if not properly taken into account, introduces a significant bias of about 8 mgal in the gravity anomalies, and which can lead to geoid height bias errors of up to 10 cm. It is further confirmed and concluded that achieving better than 5 cm precision in geoid heights from gravimetry remains a challenge that can be surmounted only with the proper combination of terrestrial and airborne data, thus realizing higher data resolution over most of South Korea than currently available solely from the airborne data.
 Keywords
Geoid determination;Terrestrial gravity;Airborne gravity;Combination of gravity data;
 Language
English
 Cited by
1.
On the spectral combination of satellite gravity model, terrestrial and airborne gravity data for local gravimetric geoid computation, Journal of Geodesy, 2016, 90, 12, 1405  crossref(new windwow)
2.
Heterogeneous Gravity Data Fusion and Gravimetric Quasigeoid Computation in the Coastal Area of China, Marine Geodesy, 2017, 40, 2-3, 142  crossref(new windwow)
3.
The New Zealand gravimetric quasigeoid model 2017 that incorporates nationwide airborne gravimetry, Journal of Geodesy, 2017, 1432-1394  crossref(new windwow)
 References
1.
Bae, T.S., Lee, J., Kwon, J.H., Hong, C.K. (2012), Update of the precision geoid determination in Korea, Geophysical Prospecting, Vol. 60, pp. 555-571. crossref(new window)

2.
Blaha, T., Hirsch, M., Keller, W., Scheinert, M. (1996), Application of a spherical FFT approach in airborne gravimetry, Journal of Geodesy, Vol. 70, pp. 663- 672. crossref(new window)

3.
Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Joanne, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D. (2007), The Shuttle Radar Topography Mission, Rev. Geophys., Vol. 45, RG2004.

4.
Featherstone, W.E. (2013), Deterministic, stochastic, hybrid and band-limited modifications of Hotine's integral, Journal of Geodesy, Vol. 87, 487-500. crossref(new window)

5.
Forsberg, R., Olesen, A.V. (2010), Airborne gravity field determination, In: Xu G (ed.), Sciences in Geodesy I, Advances and Future Directions, Springer-Verlag, Berlin.

6.
Hofmann-Wellenhof, B., Moritz, H. (2005), Physical Geodesy, Springer Verlag, Berlin.

7.
Huang, J., Véronneau, M. (2005), Applications of downwardcontinuation in gravimetric geoid modeling: case studies in Western Canada, Journal of Geodesy, Vol. 79, pp. 135-145. crossref(new window)

8.
Huang, J., Veronneau, M. (2013), Canadian gravimetric geoid model 2010, Journal of Geodesy, Vol. 87, pp. 771-790. crossref(new window)

9.
Hwang, C., Hsiao, Y.S., Shih, H.C., Yang, M., Chen, K.H., Forsberg, R., Olesen, A. (2007): Geodetic and geophysical results from a Taiwan airborne gravity survey: Data reduction and accuracy assessment, Journal of Geophysical Research, Vol. 112, B04407.

10.
Jekeli, C. (1981), Modifying Stokes' function to reduce the error of geoid undulation computations, Journal of Geophysical Research, Vol. 86, No. B6, pp. 6985-6990. crossref(new window)

11.
Jekeli, C., Serpas, J.G. (2003), Review and numerical assessment of the direct topographical reduction in geoid determination, Journal of Geodesy, Vol. 77, pp. 226-239. crossref(new window)

12.
Jekeli, C., Yang, H.J., Kwon, J.H. (2009), Using gravity and topography-implied anomalies to assess data requirements for precise geoid computation, Journal of Geodesy, Vol 83, No. 12, pp. 1193-1202. crossref(new window)

13.
Jekeli, C., Yang, H.J., Kwon, J.H. (2012), The offset of the South Korean Vertical Datum from a global geoid, KSCE Journal of Civil Engineering, Vol. 16, No. 5, pp. 816-821. crossref(new window)

14.
Moritz, H. (1980), Advanced Physical Geodesy, Abacus press, Tunbridge Wells, Kent.

15.
Novak, P., Heck, B. (2002), Downward continuation and geoid determination based on band-limited airborne gravity data, Journal of Geodesy, Vol. 76, pp. 269-278. crossref(new window)

16.
Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.F. (2012), The development and evaluation of Earth Gravitational Model (EGM2008), Journal of Geophysical Research, Vol. 117, B04406, doi: 10.1029/2011JB008916. crossref(new window)

17.
Rummel, R., Yi, W., Stummer, C. (2011), GOCE gravitational gradiometry, Journal of Geodesy, Vol. 85, pp. 777-790. crossref(new window)

18.
Vanicek, P., Huang, J., Novak, P., Pagiatakis, S., Veronneau, M., Martinec, Z., Featherstone, W.E. (1999), Determination of the boundary values for the Stokes-Helmert problem, Journal of Geodesy, Vol. 73, pp.180-192. crossref(new window)

19.
Wang, Y.M., Saleh, J., Li, X., Roman, D.R. (2012), The US Gravimetric Geoid of 2009 (USGG2009): model development and evaluation, Journal of Geodesy, Vol. 86, pp. 165-180. crossref(new window)

20.
Wichiencharoen, C. (1982), The indirect effects on the computation of geoid undulation, OSU Report 336, Department of Geodetic Science and Surveying, The Ohio State University, Ohio, USA.

21.
Wong, L., Gore, R. (1969), Accuracy of geoid heights from modified Stokes kernels, Geophysical Journal of the Royal Astronomical Society, Vol. 18, No. 1, pp. 81-91. crossref(new window)