JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Optimization of T/C Lifting Plan using Dependency Structure Matrix (DSM)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Optimization of T/C Lifting Plan using Dependency Structure Matrix (DSM)
Kim, Seungho; Kim, Sangyong; Jean, Jihoon; An, Sung-Hoon;
  PDF(new window)
 Abstract
Tower crane (T/C) is one of the major equipment that is highly demanded in construction projects. Especially, most high-rise building projects require T/C to perform lifting and hoisting activities of materials. Therefore, lifting plan of T/C needs to reduce construction duration and cost. However, most lifting plan of the T/C in construction sites has still performed depending on experience and intuition of the site manager without systematic process of rational work. Dependency structure matrix (DSM) is useful tool in planning the activity sequences and managing information exchanges unlike other existing tools. To improve lifting plan of T/C efficiently, this study presents a framework for the scheduling T/C using DSM through the case study in real world construction site. The results of case study showed that the scheduling T/C using DSM is useful to optimize the T/C lifting plan in terms of easiness, specially in the typical floor cycle lifting planning.
 Keywords
tower crane;dependency structure matrix;lifting plan;frame construction;typical floor;
 Language
Korean
 Cited by
 References
1.
Sawhney A, Mund, A. Adaptive probabilistic neural network- based crane type selection system. Journal of construction engineering and management. 2002 May;128(3):265-73. crossref(new window)

2.
Kim SW, Choe MK. A Study on the Lifting Progress Character Tributary for the Construction Materials Moving Method. Journal of the Architectural Institute of Korea. 2010 Mar;12(1):199-205.

3.
Jang S. Tower Crane Operation Management Using the Dependency Structure Matrix (DSM) [master's thesis]. [Seoul (Korea)]: Seoul National University; 2009. 96 p.

4.
Huang C, Wong CK, Tam CM. Optimization of tower crane and material supply locations in a high-rise building site by mixed-integer linear programming. Automation in Construction. 2011 Aug;20(5):571-80. crossref(new window)

5.
Marzouk M, Abubakr A. Decision support for tower crane selection with building information models and genetic algorithms. Automation in Construction. 2016 Jan;61:1-15. crossref(new window)

6.
Shapira A, Lucko G, Schexnayder CJ. Cranes for building construction projects. Journal of Construction Engineering and Management. 2007 Sep;133(9):690-700. crossref(new window)

7.
Shin YS. Construction Lift Planning System in Tall Building Construction. Journal of the Architectural Institute of Korea. 2011 Nov;27(11):227-35.

8.
Al-Hussein M, Niaz MA, Yu H, Kim H. Integrating 3D visualization and simulation for tower crane operations on construction sites. Automation in Construction. 2006 Sep;15(5):554-62. crossref(new window)

9.
Zhang P, Harris FC, Olomolaiye PO, Holt GD. Location optimization for a group of tower cranes. Journal of construction engineering and management. 1999 Mar;125(2):115-22. crossref(new window)

10.
Tam CM, Tong TK. GA-ANN model for optimizing the locations of tower crane and supply points for high-rise public housing construction. Construction Management and Economics. 2003;21(3):257-66. crossref(new window)

11.
Sacks R, Navon R, Brodeskaia I, Shapire A. Feasibility of Automated Monitoring of Lifting Equipment in Support of Project Control. Journal of construction engineering and management. 2005 May;131(5):604-14. crossref(new window)

12.
Ahn BJ, Kim JJ. Evaluating the Feasibility of a Lift Plan for Finish Materials in high-Rise Building Construction. Journal of the Architectural Institute of Korea. 2001 Jan;17(1):145-56.

13.
Lee UK, Kang KI, Kim GH, Cho HH. Improving tower crane productivity using wireless technology. Computer-Aided Civil and Infrastructure Engineering. 2006 Nov;21(8):594-604. crossref(new window)

14.
An H, Lee S, Jeong S. Development of Tower-crane Monitoring System Using Genetic Algorithm. Proceeding of Institute of Control, Robotics and Systems; 2009 Sep 2-4; Busan, Korea. Seoul (Korea): 2009. p. 826-8.

15.
Lee JH, Kim YS. The Effective Process of Tower Crane Lifting & Material Management Using Smart-Phone. Journal of the Architectural Institute of Korea. 2012 Jul;28(7):141-50.

16.
Yassine A, Braha D. Complex concurrent engineering and the design structure matrix method. Concurrent Engineering. 2003 Sep;11(3):165-76. crossref(new window)