JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Adaptive Frequency Resource Allocation For FFR Based Femtocell Network Environment
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Adaptive Frequency Resource Allocation For FFR Based Femtocell Network Environment
Bae, Won-Geon; Kim, Jeong-Gon;
  PDF(new window)
 Abstract
According to distribute of resource of macro cell and reduce distance between transmitter and receiver, Femto cell system is promising to provide costeffective strategy for high data traffic and high spectral efficient services in future wireless cellular system environment. However, the co-channel operation with existing Macro networks occurs some severe interference between Macro and Femto cells. Hence, the interference cancellation or management schemes are imperative between Macro and Femto cells in order to avoid the decrease of total cell throughput. First, we briefly investigate the conventional resource allocation and interference cancellation scheme between Macro and Femto cells. So we found that cell throughput and frequency reuse ware decreased Then, we propose an adaptive resource allocation scheme based on the distribution of Femtocell traffic in order to increase the cell throughput and also maximize the spectral efficiency over the FFR (Fractional Frequency Reuse) based conventional resource allocation schemes. Simulation Results show that the proposed scheme attains a bit similar SINR (Signal to Interference Noise Ratio) distribution but achieves much higher total cell throughput performance distribution over the conventional resource allocation schemes for FFR and future IEEE 802.16m based Femtocell network environment.
 Keywords
Femtocell;FFR;
 Language
Korean
 Cited by
 References
1.
임성묵, 권태훈, 박성수, 홍대식, "펨토셀에서의 간섭 완화 및 회피 기법", 한국통신학회지 vol 25, no 12, p41-48, 2008

2.
Andrews, M., Capdevielle, V., Feki, A., Gupta, P. ,"Autonomous Spectrum Sharing for Mixed LTE Femto and Macro Cells Deployments", INFOCOM IEEE Conference on Computer Communications Workshops 2010, pp. 1-5, 2010

3.
박상규, 박세웅, "자가구성 펨토셀의 동적 셀간 간섭 회피 기법", 한국통신학회논문지, vol 36, no3, p259-266, 2011

4.
H. Claussen, "Performance of macro- and cochannel femtocells in a hierarchical cell structure," IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2007), pp. 1-.5, Athens, Greece, September 2007.

5.
K. Cho, W. Lee, D. Yoon, K. Hyun, and Yun-Sung Choi, "Resource alloation for orthogonal and co-channel femtocells in a hierarchical cell structure," 13th IEEE International Symposium on Consumer Electronics (ISCE2009), pp. 655-656, 25-28 May 2009.

6.
L. T. W. Ho and H. Claussen, "Effects of userdeployed, cochannel femtocells on the call drop probability in a residential scenario," IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2007), pp. 1-.5, Athens, Greece, September 2007.

7.
I. Guvenc, M. R. Jeong, F. Watanabe, and H. Inamura, "A hybrid frequency assignment for femtocells and coverage area analysis for cochannel operation," IEEE Communications Letters, pp. 880- -882, December 2008.

8.
D. Lopez-Perez, G. De La Roche, A. Valcarce, A. Juttner and J. Zhang, "Interference avoidance and dynamic frequency planning for WiMAX femtocells networks," Communication Systems, 2008( ICCS 2008), 11th IEEE Singapore International Conference, pp. 1579-1584, 19-21 November 2008.

9.
Tara Ali-Yahiya and Hakima Chaouchi "Fractional Frequency Reuse for Hierarchical ResourceAllocation in Mobile WiMAX Networks", EURASIP Journal on Wireless Communications and Networking, 2010.

10.
Thomas Novlan et al, "Comparison of Fractional Frequency Reuse Approaches in the OFDMA Cellular Downlink", IEEE GLOBECOM 2010, vol., no., pp.1-5, 6-10 Dec. 2010.

11.
Tariq, F, Dooley, L.S, Poulton, A.S, Yusheng Ji, "Dynamic fractional frequency reuse based hybrid resource management for femtocell networks", Wireless Communications and Mobile Computing Conference (IWCMC), 2011 7th International, pp.272-277, 2011

12.
IEEE 802.16m Standardization Group, "802.16m Evaluation Methodology Document", v. 1.0, Jan. 2009.

13.
IEEE 802.16m Standardization Group, "802.16m System Description Document", Dec. 2010.