JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Ranging Algorithm for IR-UWB in Multi-Path Environment Using Gamma Distribution
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Ranging Algorithm for IR-UWB in Multi-Path Environment Using Gamma Distribution
Kim, Jin-Ho; Kim, Hyeong-Seok; Cho, Sung Ho;
  PDF(new window)
 Abstract
The IR-UWB radar system radiates a pulse whose width is several hundred pico sec at Tx antenna and check the time to receive the pulse that reflected from target to measure the TOA. In this paper, we present a new algorithm which supplement the conventional ranging algorithm for more accurate estimation. We get received signal data using IR-UWB Radar module which equipped a NVA6000 UWB Transceiver and analysis the data of multi-path. Consequently, we found the property of UWB multi-path signal, which best fit a Gamma distribution. so we present a algorithm using Gamma-distribution and compared a performance with conventional ranging algorithm.
 Keywords
IR-UWB;Ranging;Mutti-path;Gamma distribution;
 Language
Korean
 Cited by
1.
해상 부유체 모델의 표본 데이터에 대해서 최대우도를 갖는 누적분포함수 추정,임정빈;양원재;

한국항해항만학회지, 2013. vol.37. 5, pp.453-461 crossref(new window)
2.
무선 USB 기술을 활용한 무선웹캠 구현 및 적용방법,채정식;반태학;정회경;

한국정보통신학회논문지, 2014. vol.18. 3, pp.569-575 crossref(new window)
3.
개인정보유출 사고의 분포 추정에 관한 연구,황윤희;유진호;

정보보호학회논문지, 2016. vol.26. 3, pp.799-808 crossref(new window)
1.
Estimating Cumulative Distribution Functions with Maximum Likelihood to Sample Data Sets of a Sea Floater Model, Journal of Navigation and Port Research, 2013, 37, 5, 453  crossref(new windwow)
 References
1.
J.D Talor. Introduction to Ultra-Wideband Radar Systems, Florida:CRC Press, 1995

2.
Peebles PZ Jr. Radar Principles. Wiley, New York, 1998

3.
J. H. Kim, I. S. Baek, and S. H. Cho, "Compensation of received signal attenuation by distance using UWB radar," in Proc. KICS Winter Conf., pp. 282-283, Feb. 2012.

4.
A. McIvor, Q. Zang, and R. Klette, "The background subtraction problem for video surveillance systems," in Proc. Int. Workshop Robot Vision, pp. 176-183, Feb. 2001.

5.
S. M. Yano, "Investigating the ultra-wideband indoor wireless channel," in Proc. IEEE Veh. Technol. Soc., Conf. (VTC) Spring, vol. 3, pp. 1200-1204, May. 2002.

6.
J. H. Kim, I. S. Baek, J. S. Park, and S. H. Cho, "A ranging algorithm for multiple targets using an IR-UWB radar system," in Proc. Int. Tech. Conf. on Circ./Syst., Comput. and Commun. (ITC-CSCC), Jul. 2012.

7.
H. Hashemi, "Impulse response modeling of the indoor radio propagation channels," IEEE Trans. Sel.. Areas Commun., vol. 11, no. 7, Sep. 1993.

8.
S. Chang, N. Mitsumoto, and J. W. Burdick, "An algorithm for UWB radar based human detection," in Proc. IEEE Radar Conf. (RadarCon), pp. 1-6 , May 2009.

9.
S. S. Ghassemzadeh, L. J. Greenstein, A. Kavcic, T. Sveinsson, and V. Tarokh, "UWB indoor delay profile model for residential and commercial environments," in Proc. IEEE Veh. Technol. Conf. (VTC) Fall, pp. 3120-3125, Sep. 2003.

10.
D. Cassioli, M. Z. Win and A. F. Molisch, "A statistical model for the UWB indoor channel," in Proc. IEEE Veh. Technol. Conf. (VTC), vol. 2, pp. 1159-1163, May 2001.