JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Design of a 6-Axis Inertial Sensor IC for Accurate Location and Position Recognition of M2M/IoT Devices
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Design of a 6-Axis Inertial Sensor IC for Accurate Location and Position Recognition of M2M/IoT Devices
Kim, Chang Hyun; Chung, Jong-Moon;
  PDF(new window)
 Abstract
Recently, inertial sensors are popularly used for the location and position recognition of small devices for M2M/IoT. In this paper, we designed low power, low noise, small sized 6-axis inertial sensor IC for mobile applications, which uses a 3-axis piezo-electric gyroscope sensor and a 3-axis piezo-resistive accelerometer sensor. Proposed IC is composed of 3-axis gyroscope readout circuit, two gyroscope sensor driving circuits, 3-axis accelerometer readout circuit, 16bit sigma-delta ADC, digital filter and control circuit and memory. TSMC mixed signal CMOS process was used. Proposed IC reduces 27% of the current consumption of LSM330.
 Keywords
gyroscope;accelerometer;MEMS;inertial sensor;piezo;
 Language
Korean
 Cited by
1.
샘플 홀드 회로를 이용한 초퍼 안정화 기법이 적용된 저잡음 증폭기,박영민;남민호;조경록;

전자공학회논문지, 2016. vol.53. 10, pp.27-33 crossref(new window)
2.
사물인터넷 환경에서 보행자 상태추정을 포함하는 생활안전 보장,서동혁;김성길;

한국전자통신학회논문지, 2016. vol.11. 2, pp.237-244 crossref(new window)
 References
1.
S. E. Alper and T. Akin, "A single-crystal silicon symmetrical and decoupled MEMS gyroscope on an insulating substrate," J. Microelectromech. Syst., vol. 14, no. 4, pp. 707-717, Aug. 2005. crossref(new window)

2.
S. E. Alper, Y. Temiz, and T. Akin, "A compact angular rate sensor system using a fully decoupled silicon-on-glass MEMS gyroscope," J. Microelectromech. Syst., vol. 17, no. 6, pp. 1418-1429, Dec. 2008. crossref(new window)

3.
X. Wu, L. Xie, J. Xing, P. Don, H. Wang, and J. Su, "A z-axis quartz tuning fork micromachined gyroscope based on shear stress detection," IEEE Sensors J., vol. 12, no. 5, pp. 1246-1252, May 2012. crossref(new window)

4.
A. Sharma, M. F. Zaman, and F. Ayazi, "A sub-$0.2^{\circ}$/hr bias drift micromechanical silicon gyroscope with automatic CMOS modematching," IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1593-1608, May 2009. crossref(new window)

5.
L. Aaltonen and K. A. I. Halonen, "Pseudocontinuous- time readout circuit for a $300^{\circ}$/s capacitive 2-axis micro-gyroscope," IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3609-3620, Dec. 2009. crossref(new window)

6.
L. Aaltonen, A. Kalanti, M. Pulkkinen, M. Paavola, M. Kamarainen, and K. A. I. Halonen, "A 2.2mA 4.3$mm^2$ ASIC for a $1000^{\circ}$/s 2-axis capacitive micro-gyroscope," IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1682-1692, Jul. 2011. crossref(new window)

7.
H. Sun, K. Jia, X. Liu, G. Yan, Y. Hsu, R. M. Fox, and H. Xie, "A CMOS-MEMS gyroscope interface circuit design with high gain and low temperature dependence," IEEE Sensors J., vol. 11, no. 11, pp. 2740-2748, Nov. 2011.

8.
S. Gunthner, K. Kapser, M. Rose, B. Hartmann, M. Kluge, U. Schmid, and H. Seidel, "Analysis of piezo-resistive read-out signals for a silicon tuning fork gyroscope," in Proc. IEEE, vol. 3, pp. 1411-1414, Oct. 2004.

9.
O. Aydin and T. Akin, "A bulk-micromachined fully differential MEMS accelerometer with split interdigitated fingers," IEEE Sensors J., vol. 13, no. 8, pp. 2914-2921, Aug. 2013. crossref(new window)

10.
M.-H. Tsai, Y.-C. Liu, and W. Fang, "A three-axis CMOS-MEMS accelerometer structure with vertically integrated fully differential sensing electrodes," J. microelectromech. Syst., vol. 21, no. 6, pp. 1329-1337, Dec. 2012. crossref(new window)

11.
H. Sun, D. Fang, K. Jia, F. Maarouf, H. Qu, and H. Xie, "A low-power low-noise dual -chopper amplifier for capacitive CMOSMEMS accelerometers," IEEE Sensors J., vol. 11, no. 4, pp. 925-933, Apr. 2011. crossref(new window)