JOURNAL BROWSE
Search
Advanced SearchSearch Tips
An Illumination-Insensitive Stereo Matching Scheme Based on Weighted Mutual Information
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
An Illumination-Insensitive Stereo Matching Scheme Based on Weighted Mutual Information
Heo, Yong Seok;
  PDF(new window)
 Abstract
In this paper, we propose a method which infers an accurate disparity map for radiometrically varying stereo images. For this end, firstly, we transform the input color images to the log-chromaticity color space from which a linear relationship can be established during constructing a joint pdf between input stereo images. Based on this linear property, we present a new stereo matching cost by combining weighted mutual information and the SIFT (Scale Invariant Feature Transform) descriptor with segment-based plane-fitting constraints to robustly find correspondences for stereo image pairs which undergo radiometric variations. Experimental results show that our method outperforms previous methods and produces accurate disparity maps even for stereo images with severe radiometric differences.
 Keywords
Stereo Matching;Mutual Information;Illumination Variation;Camera Variation;
 Language
Korean
 Cited by
 References
1.
W.-S. Jang, C. Lee, and Y.-S. Ho, "Efficient depth map generation for various stereo camera arrangements," J. KICS, vol. 37, no. 6, pp. 458-463, 2012.

2.
C. Lee, H. Song, B. Choi, and Y.-S. Ho, "Multi-view generation using high resolution stereoscopic cameras and a low resolution time-of-flight camera," J. KICS, vol. 37, no. 4, pp. 239-249, 2012.

3.
C. Song and J. Lee, "Detection of illegal u-turn vehicles by optical flow analysis," J. KICS, vol. 39, no. 10, pp. 948-956, 2014.

4.
http://vision.middlebury.edu/stereo/, 2015.

5.
http://www.photomodeler.com/, 2015.

6.
S. Birchfield and C. Tomasi, "A pixel dissimilarity measure that is insensitive to image sampling," IEEE Trans. Pattern Anal. and Machine Intell., vol. 20, no. 4, pp. 401-406, 1998. crossref(new window)

7.
Y. Boykov, O. Veksler, and R. Zabih, "Fast approximate energy minimization via graph cuts," IEEE Trans. Pattern Anal. and Machine Intell., vol. 23, no. 11, pp. 1222-1239, 2001. crossref(new window)

8.
D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis," IEEE Trans. Pattern Anal. and Machine Intell., vol. 24, no. 5, pp. 603-619, 2001.

9.
A. Chakrabarti, D. Scharstein, and T. Zickler, "An empirical camera model for internet color vision," in Proc. British Machine Vision Conf., 2009.

10.
M. Ebner, Color constancy, ser. Wiley-IS&T Series in Imaging Sci. and Technol., John Wiley & Sons, 2007.

11.
G. Egnal, Mutual Information as a Stereo Correspondence Measure, in Technical Report MS-CIS-00-20, Computer and Information Science, Univ. of Pennsylvania, 2000.

12.
G. D. Finlayson, S. D. Hordley, G. Schaefer, and G. Y. Tian, "Illuminant and device invariant colour using histogram equalisation," Pattern Recognition, vol. 38, no. 2, pp. 179-190, 2005. crossref(new window)

13.
Y. S. Heo, K. M. Lee, and S. U. Lee, "Robust stereo matching using adaptive normalized cross correlation," IEEE Trans. Pattern Anal. and Machine Intell., vol. 33, no. 4, pp. 807-822, 2011. crossref(new window)

14.
Y. S. Heo, K. M. Lee, and S. U. Lee, "Mutual information-based stereo matching combined with SIFT descriptor in log-chromaticity color space," in Proc. IEEE CVPR 2009, pp. 445-452, Miami, FL, Jun. 2009.

15.
Y. S. Heo, K. M. Lee, and S. U. Lee, "Joint depth map and color consistency estimation for stereo images with different illuminations and cameras," IEEE Trans. Pattern Anal. and Machine Intell., vol. 35, no. 5, pp. 1094-1106, 2013. crossref(new window)

16.
H. Hirschmuller, "Stereo processing by semiglobal matching and mutual information," IEEE Trans. Pattern Anal. and Machine Intell., vol. 30, no. 2, pp. 328-341, 2008. crossref(new window)

17.
H. Hirschmuller and D. Scharstein, "Evaluation of stereo matching costs on images with radiometric differences," IEEE Trans. Pattern Anal. and Machine Intell., vol. 31, no. 9, pp. 1582-1599, 2009. crossref(new window)

18.
L. Hong and G. Chen, "Segment-based stereo matching using graph cuts," in Proc. IEEE CVPR, vol. 1, pp. 74-81, 2004.

19.
X. Hu and P. Mordohai, "Evaluation of stereo confidence indoors and outdoors," in Proc. IEEE CVPR, pp. 1466-1473, San Francisco, Jun. 2010.

20.
H. Jeon, A. Basso, and P. F. Driessen, "A global correspondence for scale invariant matching using mutual information and the graph search," in Proc. Int. Conf. Multimedia and Expo, pp. 1745-1748, Toronto, Ont, Jul. 2006.

21.
S. Kagarlitsky, Y. Moses, and Y. Hel-Or, "Piecewise-consistent color mappings of images acquired under various conditions," in Proc. IEEE Int. Conf. Computer Vision, pp. 2311-2318, Kyoto, Sept.-Oct. 2009.

22.
J. Kim, V. Kolmogorov, and R. Zabih, "Visual correspondence using energy minimization and mutual information," in Proc. IEEE Int'l Conf. Computer Vision, vol. 2, pp. 1033-1040, Nice, France, Oct. 2003.

23.
S. J. Kim and M. Pollefeys, "Robust radiometric calibration and vignetting correction," IEEE Trans. Pattern Anal. and Machine Intell., vol. 30, no. 4, pp. 562-576, Apr. 2008. crossref(new window)

24.
S. Lin, Y. Li, S. B. Kang, X. Tong, and H. Y. Shum, "Diffuse-specular separation and depth recovery from image sequences," in Proc. Eur. Conf. Computer Vision, 2002.

25.
C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman, "SIFT flow: Dense correspondence across different scenes," in Proc. Eur. Conf. Computer Vision, vol. 5034, pp. 28-42, 2008.

26.
D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int'l J. Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.

27.
P. Montesinos, V. Gouet, R. Deriche, and D. Pele, "Matching color uncalibrated images using differential invariants," Image and Vision Computing, vol. 18, no. 1, pp. 659-671, 2000. crossref(new window)

28.
A. S. Ogale and Y. Aloimonos, "Robust contrast invariant stereo correspondence," in Proc. IEEE Int. Conf. Robot. and Automat., pp. 819-824, Apr. 2004.

29.
J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever, "Image registration by maximization of combined mutual information and gradient information," IEEE Trans. Med. Imaging, vol. 19, no. 8, pp. 809-814, 2000. crossref(new window)

30.
J. P. W. Pluim, J. B. A. Maintz and M. A. Viergever, "Mutual-information-based registration of medical images : A survey," IEEE Trans. Med. Imaging, vol. 22, no. 8, pp. 986-1004, 2003. crossref(new window)

31.
D. B. Russakoff, C. Tomasi, T. Rohlfing, and C. R. Maurer Jr., "Image similarity using mutual information of regions," in Proc. Eur. Conf. Computer Vision, vol. 3023, pp. 596-607, 2004.

32.
D. Scharstein and R. Szeliski, "A taxonomy and evaluation of dense two-frame stereo correspondence algorithms," Int. J. Computer Vision, vol. 47, no. 1, pp. 7-42, 2002. crossref(new window)

33.
N. Snavely, S. M. Seitz, and R. Szeliski, "Modeling the world from internet photo collections," Int. J. Computer Vision, vol. 80, no. 2, pp. 189-210, 2008. crossref(new window)

34.
S. M. Seitz and S. Baker, "Filter flow," in Proc. IEEE Int. Conf. Computer Vision, 2009.

35.
J. Sun, Y. Li, S. B. Kang, and H. Y. Shum, "Symmetric stereo matching for occlusion handling," in Proc. CVPR, vol. 2, pp. 399-406, Jun. 2005.

36.
E. Tola, V. Lepetit, and P. Fua, "DAISY: An efficient dense descriptor applied to wide-baseline stereo," IEEE Trans. Pattern Anal. and Machine Intell., vol. 32, no. 5, pp. 815-830, 2010. crossref(new window)

37.
P. Viola and W. M. Wells III, "Alignment by maximization of mutual information," Int. J. Computer Vision, vol. 24, no. 2, pp. 137-154, 1997. crossref(new window)

38.
Y. Weiss, "Deriving intrinsic images from image sequences," in Proc. IEEE Int. Conf. Computer Vision, vol. 2, pp. 68-75, Vancouver, 2001.

39.
W. Xiong and B. Funt, "Stereo retinex," in Proc. Canadian Conf. Computer and Robot Vision, Jun. 2006.

40.
J. N. Yang and S. K. Shevell, "Stereo disparity improves color constancy," Vision Res., vol. 42, no. 1, pp. 1979-1989, 2002. crossref(new window)

41.
R. Zabih and J. Woodfill, "Non-parametric local transforms for computing visual correspondence," in Proc. Eur. Conf. Computer Vision, vol. 801, pp. 151-158, Jun. 1994.

42.
C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski, "High-quality video view interpolation using a layered representation," in Proc. SIGGRAPH, pp. 600-608, Aug. 2004.

43.
V. Kolmogorov, "Convergent tree-reweighted message passing for energy minimization," IEEE Trans. Pattern Anal. and Machine Intell., vol. 28, no. 10, pp. 1568-1583, 2006. crossref(new window)

44.
R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen, and C. Rother, "A comparative study of energy minimization methods for markov random fields with smoothness-based priors," IEEE Trans. Pattern Anal. and Machine Intell., vol. 30, no. 6, pp. 1068-1080, Jun. 2008. crossref(new window)