Advanced SearchSearch Tips
Design of a Low Noise 6-Axis Inertial Sensor IC for Mobile Devices
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Design of a Low Noise 6-Axis Inertial Sensor IC for Mobile Devices
Kim, Chang Hyun; Chung, Jong-Moon;
  PDF(new window)
In this paper, we designed 1 chip IC for 3-axis gyroscope and 3-axis accelerometer used for various IoT/M2M mobile devices such as smartphone, wearable device and etc. We especially focused on analysis of gyroscope noise and proposed new architecture for removing various noise generated by gyroscope MEMS and IC. Gyroscope, accelerometer and geo-magnetic sensors are usually used to detect user motion or to estimate moving distance, direction and relative position. It is very important element to designing a low noise IC because very small amount of noise may be accumulated and affect the estimated position or direction. We made a mathematical model of a gyroscope sensor, analyzed the frequency characteristics of MEMS and circuit, designed a low noise, compact and low power 1 chip 6-axis inertial sensor IC including 3-axis gyroscope and 3-axis accelerometer. As a result, designed IC has 0.01dps/ of gyroscope sensor noise density.
inertial sensor IC;gyroscope;low noise;quadrature error;modeling;
 Cited by
C. Perera, A. Zaslavsky, P. Christen, and D. Georgaopoulos, "Context aware computing for the internet of things: A survey," IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 414-454, 2014. crossref(new window)

C. Perera, A. Zaslavsky, C. H. Liu, M. Compton, P. Christen, and D. Georgakopoulos, "Sensor search techniques for sensing as a service architecture for the internet of things," IEEE Sensors J., vol. 14, no. 2, pp. 406-420, Feb. 2014. crossref(new window)

S. W. Lloyd, S. Fan, and M. J. F. Digonnet, "Experimental observation of low noise and low drift in a laser-driven fiber optic gyroscope," J. Lightw. Technol., vol. 31, no. 13, pp. 2079-2085, Jul. 2013.

H. Ma, W. Wang, Y. Ren, and Z. Jin, "Low-noise low-delay digital signal processor for resonant micro optic gyro," IEEE Photonics Technol. Lett., vol. 25, no. 2, pp. 198-201, Jan. 2013. crossref(new window)

F. Hakimi and J. D. Moores, "RIN-reduced light source for ultra-low noise interferometric fibre optic gyroscopes," Electron. Lett., vol. 49, no. 3, pp. 205-207, Jan. 2013. crossref(new window)

K. Lan and W. Shin, "Using smart-phones and floor plans for indoor location tracking," IEEE Trans. Human-Machine Syst., vol. 44, no. 2, pp. 211-221, Apr. 2014. crossref(new window)

Z. Y. Guo, L. T. Lin, Q. C. Zhao, Z. C. Yang, H. Xie, and G. Z. Yan, "A lateral-axis microelectromechanical tuning - fork gyroscope with decoupled comb drive operating at atmospheric pressure," J. Microelectromech. Syst., vol. 19, no. 3, pp. 458-468, Jun. 2010. crossref(new window)

A. Walther, C. L. Blanc, N. Delorme, Y. Deimerly, R. Anciant, and J. Willemin, "Bias contributions in a MEMS tuning fork gyroscope," J. Microelectromech. Syst., vol. 22, no. 2, pp. 303-308, Apr. 2013. crossref(new window)

M. S. Weinberg and A. Kourepenis, "Error sources in in-plane silicon tuning-fork MEMS gyroscopes," J. Microelectromech. Syst., vol. 15, no. 3, pp. 479-491, Jun. 2006. crossref(new window)

X. Li, X. Chen, Z. Song, P. Dong, Y. Wang. J. Jiao, and H. Yang, "A microgyroscope with piezoresistance for both high-performance coriolis-effect detection and seesaw-like vibration control," J. Microelectromech. Syst., vol. 15, no. 6, pp. 1698-1707, Dec. 2006. crossref(new window)

L. Aaltonen, A. Kalanti, M. Pulkkinen, M. Paavola, M. Kamarainen, and K. A. I. Halonen, "A 2.2mA $4.3mm^2$ ASIC for a 1000degree/s 2-Axis capacitive microgyroscope," IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1682-1692, Jul. 2011. crossref(new window)

A. Sharma, M. F. Zaman, and F. Ayazi, "A 104-dB dynamic range transimpedance-based CMOS ASIC for tuning fork microgyroscopes," IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1790-1802, Aug. 2007. crossref(new window)

J. Raman, E. Cretu, P. Rombouts, and L. Weyten, "A closed-loop digitally controlled MEMS gyroscope with unconstrained sigmadelta force-feedback," IEEE Sensors J., vol. 9, no. 3, pp. 297-305, Mar. 2009. crossref(new window)

A. Norouzpour-Shirazi, M. F. Zaman, and F. Ayazi, "A digital phase demodulation technique for resonant MEMS gyroscopes," IEEE Sensors J., vol. 14, no. 9, pp. 3260- 3266, Sept. 2014. crossref(new window)

S. Park and R. Horowitz, "Adaptive control for the conventional mode of operation of MEMS gyroscopes," J. Microelectromech. Syst., vol. 12, no. 1, pp. 101-108, Feb. 2003. crossref(new window)

A. Sharma, M. F. Zaman, and F. Ayazi, "A sub-0.2degrees/hr bias drift micromechanical silicon gyroscope with automatic CMOS mode-matching," IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1593-1608, May 2009. crossref(new window)

R. P. Leland, "Adaptive control of a MEMS gyroscope using lyapunov methods," IEEE Trans. Control Syst. Technol., vol. 14, no. 2, pp. 278-283, Mar. 2006. crossref(new window)

S. Sonmezoglu, S. E. Alper, and T. Akin, "An automatically mode-matched MEMS gyroscope with wide and tunable bandwidth," J. Microelectromech. Syst., vol. 23, no. 2, pp. 284-297, Apr. 2014. crossref(new window)

M. Kirrkko-Jaakkola, J. Collin, and J. Takala, "Bias prediction for MEMS gyroscopes," IEEE Sensors J., vol. 12, no. 6, pp. 2157- 2163, Jun. 2012. crossref(new window)

Z. W. Wu, M. L. Yao, H. G. Ma, and W. M. Jia, "De-noising MEMS inertial sensors for low-cost vehicular attitude estimation based on singular spectrum analysis and independent component analysis," Electron. Lett., vol. 49, no. 14, Jul. 2013.

Y. Dong, M. Kraft, and W. Redman-White, "Micromachined vibratory gyroscopes controlled by a high-order bandpass sigmadelta modulator," IEEE Sensors J., vol. 7, no. 1, pp. 59-69, Jan. 2007. crossref(new window)

J. Georgy, A. Noureldin, M. J. Korenberg, and M. M. Bayoumi, "Modeling the stochastic drift of a MEMS-Based gyroscope in Gyro/ Odometer/GPS integrated navigation," IEEE Trans. Intell. Transportation Syst., vol. 11, no. 4, Dec. 2010.

E. Tatar, S. E. Alper, and T. Akin, "Quadrature -error compensation and corresponding effects on the performance of fully decoupled MEMS gyroscopes," J. Microelectromech. Syst., vol. 21, no. 3, pp. 656-667, Jun. 2012. crossref(new window)

S. Lee, S. Park, J. Kim, S. Lee, and D. Cho, "Surface/bulk micromachined single-crystalline -silicon micro-gyroscope," J. Microelectromech. Syst. vol. 9, no. 4, pp. 557-567, Dec. 2000. crossref(new window)

M. F. Zaman, A. Sharma, and F. Ayazi, "The resonating star gyroscope a novel multipleshell silicon gyroscope with sub-5 deg/hr allan deviation bias instability," IEEE Sensors J., vol. 9, no. 6, pp. 616-624, Jun. 2009.

M. Saukoski, L. Aaltonen, and K. A. I. Halonen, "Zero-rat output and quadrature compensation in vibratory MEMS gyroscopes," IEEE Sensors J., vol. 7, no. 12, pp. 1639- 1652, Dec. 2007. crossref(new window)