JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Inkjet-Printed Capacitive Touch Paper
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Inkjet-Printed Capacitive Touch Paper
Yun, Taehwa; Lee, Sak; Lim, Sungjoon;
  PDF(new window)
 Abstract
In this paper, an inkjet-printed capacitive touch pad is proposed. This touch pad detects contacts of human finger by detecting changes in effective capacitance due to electrical impedance of human finger. A flexible, low-cost and disposable paper is used as a substrate. Inkjet printing technology makes the fabrication fast, simple and environmentally friendly. Measured capacitances of the touched and untouched states are in the range of 163 to 182pF and 218 to 272pF, respectively. The differences in the measured capacitance of each state are sufficiently large to recognize that a finger has made contact with touch pad.
 Keywords
Touch pad;capacitive touch;inkjet printing technology;paper-electronics;touch paper;
 Language
Korean
 Cited by
1.
다이폴 상태와 루프 상태로 변환 가능한 종이접기 방식의 종이 안테나,이동주;서윤식;임성준;

한국전자파학회논문지, 2016. vol.27. 1, pp.8-13 crossref(new window)
1.
Dipole- and Loop-Mode Transformable Origami Paper Antenna, The Journal of Korean Institute of Electromagnetic Engineering and Science, 2016, 27, 1, 8  crossref(new windwow)
 References
1.
H. Kim, S. Lee, and K. Yun, "Capacitive tactile sensor array for touch screen application," Sensors and Actuators A: Physical, vol. 165, pp. 2-7, Jan, 2011. crossref(new window)

2.
S. Yun, S. Jang, G. Yun, J. Kim, and J. Kim, "Paper transistor made with covalently bonded multiwalled carbon nanotube and cellulose," Appl. Phys. Lett., vol. 95, 2009.

3.
R. Martins, A. Nathan, R. Barros, L. Pereira, P. Barquinha, N. Correia, R. Costa, A. Ahnood, I. Ferreira, and E. Fortunato, "Complementary metal oxide semiconductor technology with and on paper," Adv. Mater., vol. 23, pp. 4491-4496, Sept. 2011. crossref(new window)

4.
E. Fortunato, N. Correia, P. Barquinha, L. Pereira, G. Goncalves, and R. Martins, "High-performance flexible hybrid field-effect transistors based on cellulose fiber paper," IEEE Electron Device Lett., vol. 29, pp. 988- 990, Sept. 2008. crossref(new window)

5.
K. B. Lee, "Urine-activated paper batteries for biosystems," J. Micromech. Microeng., vol. 15, no. 9, Aug. 2005.

6.
L. Hu, H. Wu, F. La Mantia, Y. Yang, and Y. Cui, "Thin, flexible secondary Li-ion paper batteries," Acs Nano, vol. 4, pp. 5843-5848, Sept. 2010. crossref(new window)

7.
H. F. Abutarboush and A. Shamim, "Paper-based inkjet-printed tri-band U-slot monopole antenna for wireless applications," IEEE Antennas and Wirel. Propag. Lett., vol. 11, pp. 1234-1237, Dec. 2012. crossref(new window)

8.
S. Kim, A. Traille, H. Lee, H. Aubert, K. Yoshihiro, A. Georgiadis, A. Collado, and M. M. Tentzeris, "Inkjet-printed sensors on paper substrate for agricultural applications," in 2013 Eur. Microwave Conf. (EuMC), pp. 866-869, Oct. 2013.

9.
L. Yang, A. Rida, R. Vyas, and M. M. Tentzeris, "RFID tag and RF structures on a paper substrate using inkjet-printing technology," IEEE Trans. Microwave Theory and Techniques, vol. 55, pp. 2894-2901, Dec. 2007. crossref(new window)

10.
A. D. Mazzeo, W. B. Kalb, L. Chan, M. G. Killian, J. Bloch, B. A. Mazzeo, and G. M. Whitesides, "Paper-Based, Capacitive Touch Pads," Adv. Mater., vol. 24, pp. 2850-2856, Apr. 2012. crossref(new window)

11.
R. K. Kramer, C. Majidi, and R. J. Wood, "Wearable tactile keypad with stretchable artificial skin," 2011 IEEE Int. Conf. Robotics and Automation (ICRA), pp. 1103- 1107, May 2011.

12.
D. P. Cotton, I. M. Graz, and S. P. Lacour, "A multifunctional capacitive sensor for stretchable electronic skins," IEEE Sensors J., vol. 9, pp. 2008-2009, Dec. 2009. crossref(new window)

13.
R. M. Fish, L. A. Geddes, and C. F. Babbs, Medical and bioengineering aspects of electrical injuries, Lawyers & Judges Publishing Company, 2003.

14.
B. S. Cook and A. Shamim, "Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate," IEEE Trans. Antennas and Propag., vol. 60, pp. 4148-4156, Sept. 2012. crossref(new window)

15.
J. R. Greer and R. A. Street, "Thermal cure effects on electrical performance of nanoparticle silver inks," J. Acta Materialia, vol. 55, no. 18, pp. 6345-6349, Oct. 2007. crossref(new window)

16.
L. Yang, A. Rida, R. Vyas, and M. M. Tentzeris, "RFID tag and RF structures on a paper substrate using inkjet-printing technology," IEEE Trans. Microwave Theory and Techniques, vol. 55, pp. 2894-2901, Dec. 2007. crossref(new window)

17.
P. Laakso, S. Ruotsalainen, E. Halonen, M. Mantysalo, and A. Kemppainen, "Sintering of printed nanoparticle structures using laser treatment," in Proc. ICALEON, vol. 205, pp. 1360-1366, 2009.

18.
J. H. Eom, H. S. Nam, J. E. Shin, J. W. Park, and H. J. Lee, "Real-time risk detection system for passenger safety in escalator using Arduino embedded platform," in KICS Conf. 2014 Fall, pp. 26-27, Daejeon, Korea, Nov. 2014.

19.
Y. J. Shin, K. H. Oh, H. Bahn, and H. Kang, "A posture correction guidance system using Arduino and force sensitive resistors," in KICS Conf. 2014 Fall, pp. 262-263, Daejeon, Korea, Nov. 2014.

20.
C.-H. Kim, H.-W. Kang, J.-I. Kim, and S.-J. Koh, "An implementation of the low power device communication using CoAP protocol in internet of things environment," in KICS Conf. 2015 Winter, pp. 102-103, Gangwon, Korea, Jan. 2014.