JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effects of hydration structure on the femtosecond white light-induced phase transition to crystalline silicon nanocrystal having ultrabright narrowed luminescence
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of hydration structure on the femtosecond white light-induced phase transition to crystalline silicon nanocrystal having ultrabright narrowed luminescence
Choi, Kyong-Hoon; Wang, Kang-Kyun; Ha, Jeong-Hyon; Kim, Yong-Rok;
  PDF(new window)
 Abstract
Under the condition of femtosecond impulsive nonlinear optical irradiation, the bright and narrowed blue emission of silicon nanocrystal was observed. This synthetic method produced very small (~ 4 nm) oxide-capped silicon nanocrystal having probably ultra small emitting core (~ 1 nm) inferred from luminescence. By controlling the stirring condition, very high efficiencies of luminescence ( 4 fold higher) were obtained compared with the other conventional femtosecond laser fragmentation methods, which was attributed to the differences in hydration shell structure during the femtosecond laser induced irreversible phase transition reaction. When we properly adjusted the irradiation times of the white light continuum and stirring condition, very homogeneous luminescent silicon nanocrystal bands having relatively sharp lineshape were obtained, which can be attributable to the luminescent core site isolated and free from the surface defects.
 Keywords
Femtosecond laser ablation and fragmentation;Femtosecond laser irradiation time effect;Silicon nanocrystal phase transition;Hydration effect;
 Language
English
 Cited by
 References
1.
Huisken, F.; Ledoux, G.; Guillois, O.; Reynaud, C. Adv. Mater. 2002, 14, 1861-1865. crossref(new window)

2.
Fiory, A. T.; Ravindra, N. M. J. Electron. Mater. 2003, 32, 1043-1051. crossref(new window)

3.
Sato, S.; Swihart, M. Chem. Mater. 2006, 18, 4083-4088. crossref(new window)

4.
Kusova, K.; Cibulka, O.; Dohnalova, K.; Pelant, I.; Valenta, J.; Fucikova, A.; Zidek, K.; Lang, J.; Englich, J.; Matejka, P.; Stepanek, P.; Bakardjieva, S. ACS Nano 2010, 4, 4495-4504. crossref(new window)

5.
Kumar, V. Nanosilicon, 2007, Elsevier, London.

6.
Dementyev, A. E.; Cory, D. G.; Ramanathan, C. Phys. Rev. Lett. 2008, 100, 127601:1-4.

7.
Kim, K. - H.; Johnson, E. V.; Cabarrocas, P. R. i Sol. Energ. Mat. Sol. Cells 2012, 105, 208-212. crossref(new window)

8.
Kim, K. H.; Johnson, E. V.; Abramov, A.; Cabarrocas, P. R. i Eur. Phys. J. Photovolt. 2012, 3, 30301: 1-14.

9.
Zdetsis, A. D. Phys. Rev. B, 2009, 79, 195437:1-8.

10.
Belomoin, G.; Therrien, J.; Smith, A.; Rao, S.; Twesten, R.; Chaieb, S.; Nayfeh, M. H.; Wagner, L.; Mitas, L. Appl. Phys. Lett. 2002, 80, 841-843. crossref(new window)

11.
Umezu, I.; Minami, H.; Senoo, H.; Sugimura, A. J. Phys.: Conf. Ser. 2007, 59, 392-395. crossref(new window)

12.
Warner, J. H.; Rubinsztein-Dunlop, H.; Tilley, R. D. J. Phys. Chem. B 2005, 109, 19064-19067. crossref(new window)

13.
Svrcek, V.; Sasaki, T.; Shimizu, Y.; Koshizaki, N. J. Appl. Phys. 2008, 103, 023101:1-8.

14.
Holmes, J. D.; Ziegler, K. J.; Doty, R. C.; Pell, L. E.; Johnston, K. P.; Korgel, B. A. J. Am. Chem. Soc. 2001, 123, 3743-3748. crossref(new window)

15.
Li, Z. F.; Ruckenstein, E. Nano Lett. 2004, 4, 1463-1467. crossref(new window)

16.
Fujii, M.; Kovalev, D.; Goller, B.; Minobe, S.; Hayashi, S.; Timoshenko, V. Y. Phys. Rev. B 2005, 72, 165321:1-8.

17.
Zatryb, G.; Podhorodecki, A.; Misiewicz, J.; Cardin, J.; Gourbilleau, F. Nanoscale Res. Lett. 2011, 6, 106:1-8.

18.
Godefroo, S.; Hayne, M.; Jivanescu, M.; Stesmans, A.; Zacharias, M.; Lebedev, O. I.; Tendeloo, G. Van.; Moshchalkov, V. V. Nature Nanotech. 2008, 3, 174-178. crossref(new window)

19.
Anthony, R.; Kortshagen, U. Phys. Rev. B 2009, 80, 115407:1-6.

20.
Heitmann, J.; Muller, F.; Yi, L.; Zacharias, M.; Kovalev, D.; Eich horn, F. Phys. Rev. B 2004, 69, 195309:1-7.

21.
Sun, Q.; Wang, Q.; Kawazoe, Y.; Jena, P. Phys. Rev. B 2002, 66, 245425:1-6.

22.
Svrcek, V.; Sasaki, T.; Shimizu, Y.; Koshizaki, N. Appl. Phys. Lett. 2006, 89, 213113:1-3.

23.
Orii, T.; Hirasawa, M.; Seto, T. Appl. Phys. Lett. 2003, 83, 3395-3397. crossref(new window)

24.
Besner, S.; Kabashin, A. V.; Winnik, F. M.; Meunier, M. Appl. Phys. A 2008, 93, 955-959. crossref(new window)

25.
Kuzmin, P. G.; Shafeev, G. A.; Bukin, V. V.; Garnov, S. V.; Farcau, C.; Carles, R.; Warot-Fontrose, B.; Guieu, V.; Viau, G. J. Phys. Chem. C 2010, 114, 15266-15273. crossref(new window)

26.
Besner, S.; Kabashin, A. V.; Meunier, M. Appl. Phys. Lett. 2006, 89, 233122:1-3.

27.
Rioux, D.; Laferriere, M.; Douplik, A.; Shah, D.; Lilge, L.; Kabas hin, A. V.; Meunier, M. M. J. Biomed. Opt. 2009, 14, 021010:1-5.

28.
Eliezer, S.; Eliaz, N.; Grossman, E.; Fisher, D.; Gouzman, I.; Henis, Z.; Pecker, S.; Horovitz, Y.; Fraenkel, M.; Maman, S.; Lereah, Y. Phys. Rev. B 2004, 69, 144119:1-6.

29.
Guerra, R.; Ossicini, S. Phys. Rev. B 2010, 81, 245307:1-6.

30.
Shirahata, N. Phys. Chem. Chem. Phys 2011, 13, 7284-7294. crossref(new window)

31.
Smith, A.; Yamani, Z. H.; Roberts, N.; Turner, J.; Habbal, S. R.; Granick, S.; Nayfeh, M. H. Phys. Rev. B 2005, 72, 205307:1-5.

32.
Weissker, H.-Ch.; Furthmuller, J.; Bechstedt, F. Phys. Rev. B 2002, 65, 155328:1-7.

33.
Govorkov, S. V.; Emel'yanov, V. I.; Koroteev, N. I.; Shumay, I. L. J. Lumin. 1992, 53, 153-158. crossref(new window)

34.
Fausti, D.; Misochko, O. V.; Loosdrecht, P. H. M. van Phys. Rev B 2009, 80, 161207:1-4.

35.
Collet, E.; Lemee, M. H.; Buron, M.; Cailleau, H.; Wulff, M.; Luty, T.; Koshihara, S.; Meyer, M.; Toupet, L.; Rabiller, P.; Techert, S. Science 2003, 300, 612-615. crossref(new window)

36.
Mazurenko, D. A.; Nugroho, A. A.; Palstra, T. T. M.; Loosdrecht, P. H. M. van Phys. Rev. Lett. 2008, 101, 245702:1-4.

37.
Nozik, A. J. Annu. Rev. Phys. Chem. 2001, 52, 193-231. crossref(new window)

38.
Zhang, H.; Gilbert, B.; Huang, F.; Banfield, J. F. Nature 2003, 424, 1025-1029. crossref(new window)