JOURNAL BROWSE
Search
Advanced SearchSearch Tips
H/D substitution makes difference in photochemical studies: the case of dimethylamine
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
H/D substitution makes difference in photochemical studies: the case of dimethylamine
Kim, So-Yeon; Lee, Jeongmook; Kim, Sang Kyu;
  PDF(new window)
 Abstract
When the molecule in the excited state is subject to prompt predissociation, it is quite nontrivial to obtain vibrational structure of the excited state in general. This applies to the case of photochemistry of dimethylamine (DMA:). When DMA is excited to its first electronically excited state (), the N-H bond dissociation occurs promptly. Therefore, vibronic bands are homogeneously broadened to give extremely small ionization cross sections and heavily-congested spectral features, making infeasible any reasonable spectral assignment. Here, we demonstrate that the predissociation rate of the excited state could be significantly reduced by the NH/ND substitution to give the much better-resolved spectral feature, revealing the vibrational structure of the excited state of () for the first time.
 Keywords
Dimethylamine;REMPI;photoelectron imaging;predissociation;
 Language
English
 Cited by
 References
1.
E. Tannenbaum, E. M. Corrin, and A. J. Harrison, J. Chem. Phys. 1953, 21, 311-318. crossref(new window)

2.
D. P. Taylor and E. R. Bernstein, J. Chem. Phys. 1995, 103, 10453-10464. crossref(new window)

3.
D. P. Taylor, C. F. Dion, and E. R. Bernstein, J. Chem. Phys. 1997, 106, 3512-3518. crossref(new window)

4.
S. J. Baek, K. -W. Choi, Y. S. Choi, and S. K. Kim, J. Chem. Phys. 2003, 118, 11026-11039. crossref(new window)

5.
M. H. Park, K. W. Choi, S. Choi, S. K. Kim, and Y. S. Choi, J. Chem. Phys. 2006, 125, 084311. crossref(new window)

6.
D. S. Ahn, J. Lee, J.-M. Choi, K.-S. Lee, S. J. Baek, K. Lee, K.-K. Baeck and S. K. Kim, J. Chem. Phys. 2008, 128, 224305. crossref(new window)

7.
D. S. Ahn, J. Lee, Y. C. Park, Y. S. Lee and S. K. Kim, J. Chem. Phys. 2012, 136, 024306. crossref(new window)

8.
A. Golan, S. Rosenwaks and I. Bar, J. Chem. Phys. 2006, 125, 151103. crossref(new window)

9.
R. Marom, U. Zecharia, S. Rosenwaks and I. Bar, J. Chem. Phys. 2008, 128, 154319. crossref(new window)

10.
R. Marom, C. Levi, T. Weiss, S. Rosenwaks, Y. Zeiri, R. Kosloff and I. Bar, J. Phys. Chem. A. 2010, 114, 9623-9627. crossref(new window)

11.
J. O. Thomas, K. E. Lower and C. Murray, J. Phys. Chem. A. 2014, 118, 9844-9852.

12.
M. Epshtein, A. Portnov and I. Bar, Phys. Chem. Chem. Phys. 2015, 17, 19607-19615 crossref(new window)

13.
J. Wei, L. Fang, B. Zhang, W. -Y. Guo, L. -D. Zhang, S. -D. Zhang, and J. -Y. Cai, Chin. Phys. Soc. 1997, 6, 725-730.

14.
W. Li, S. D. Chambreau, S. A. Lahankar, A. G. Suits, Rev. Sci. Instrum. 2005, 76, 063106. crossref(new window)

15.
V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, H. Reisler, Rev. Sci. Instrum. 2002, 73, 2634. crossref(new window)

16.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009.

17.
I. Pugliesi, K. Muller-Dethlefs, J. Phys. Chem. A. 2006, 110, 4657-4667.

18.
All Franck-Condon simulations have been carried out using FCLabII Version 2009a, a computational package developed by C. Schriever, M.C.R. Cockett and I. Pugliesi. The latest information on program updates, a basic introduction to Franck-Condon simulations and a free download of the software can be found at http://www.fclab2.net/.