JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Visible light-induced reduction of Cr(VI) in cationic micelle solution
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Visible light-induced reduction of Cr(VI) in cationic micelle solution
Kyung, Hyunsook; Cho, Young-Jin; Choi, Wonyong;
  PDF(new window)
 Abstract
Cr(VI) reduction was successfully achieved in the presence of cationic micelles (CMs) under visible light illumination. Micelle formation of cationic surfactants seems to be critical in Cr(VI) reduction. Cr(VI) was reduced very fast above the critical micelle concentration (cmc) of CTAB solutions, but was not reduced at all either below or around the cmc of CTAB. The reduction rate of Cr(VI) was enhanced in the absence of dissolved oxygen, supporting that the removal of Cr(VI) should be achieved via a reductive pathway. When CTAB was substituted by Brij 35 or SDS, the reduction of Cr(VI) was negligible. This indicates that the electrostatic interaction between Cr(VI) and headgroups of surfactants is important in the visible light-induced Cr(VI) reduction in micellar solutions.
 Keywords
Cr(VI) reduction;Micellar photochemistry;Cationic micelle;Visible-light induced charge transfer;
 Language
English
 Cited by
 References
1.
Costa, M. Toxicol. Appl. Pharmacol. 2003, 188, 1. crossref(new window)

2.
Lin, W. Y.; Wei, C.; Rajeshwar, K. J. Electrochem. Soc. 1993, 140, 2477. crossref(new window)

3.
Ku, Y.; Jung, I.-L. Wat. Res. 2001, 35, 135. crossref(new window)

4.
Mandal, U.; Ghosh, S.; Dey, S.; Adhikari, A.; Bhattacharyya, K. J. Chem. Phys. 2008, 128, 164505. crossref(new window)

5.
Ding, H.; Yu, H.; Dong, Y.; Tian, R.; Huang, G.; Boothman, D. A.; Sumer, B. D.; Gao, J. J. Control. Release 2011, 156, 276. crossref(new window)

6.
Kopec, M.; Niemiec, W.; Laschewsky, A.; Nowakowska, M.; Zapotoczny, S. J. Phys. Chem. C 2014, 118, 2215. crossref(new window)

7.
Tavernier, H. L.; Laine, F.; Fayer, M. D. J. Phys. Chem. A 2001, 105, 8944.

8.
Alkaitis, S. A.; Beck, G.; Graetzel, M. J. Am. Chem. Soc. 1975, 97, 5723. crossref(new window)

9.
Hackett, J. W.; Turro, C. J. Phys. Chem. A 1998, 102, 5728. crossref(new window)

10.
Cho, Y.; Kyung, H.; Choi, W. Appl. Catal. B: Environ. 2004, 52, 23 crossref(new window)

11.
Cho, Y.; Park. H.; Choi, W. J. Photochem. Photobiol. A: Chem. 2004, 165, 43 crossref(new window)

12.
Long, J. A.; Rankin, B. M.; Ben-Amotz, D. J. Am. Chem. Soc. 2015, 137, 10809. crossref(new window)

13.
Shi, Z.; Sigman, M. E.; Ghosh, M. M.; Dabestani, R. Environ. Sci. Technol. 1997, 31, 3581. crossref(new window)

14.
Buwalda, R. T.; Jonker, J. M.; Engberts, J. B. F. N. Langmuir 1999, 15, 1083. crossref(new window)

15.
Cang, H.; Brace, D. D.; Fayer, M. D. J. Phys. Chem. B 2001, 105, 10007. crossref(new window)

16.
Turro, N. J.; Gratzel, M.; Braun, A. M. Angew. Chem. Int. Ed. 1980, 19, 675 crossref(new window)

17.
Munoz, J.; Domenech, X. J Appl Electrochem 1990, 20, 518. crossref(new window)

18.
Gimenez, J.; Aguado, M. A.; Cervera-March, S. J. Mol. Catal. A: Chem. 1996, 105, 67. crossref(new window)